Optimal Design of Multi-Airgap Electrical Machines: An Unknown Size Mixed-Constrained Global Optimization Formulation

This paper solves, in a rational way, more sophisticated electrical machine design problems by extending the work done by Fitan et al. It addresses the special case of multi-airgap cylindrical concentric machines. The solution requires a reformulation of the inverse problem associated with the design of electrical machines. Thus, a new mixed-constrained global optimization problem has to be solved. From a mathematical point of view, a major difficulty is that the number of variables and constraints varies during the resolution, depending on the number of considered airgaps. Moreover, this involves extensions of analytical models used for permanent-magnet machines. The paper uses numerical tests for concentric rotor machines with one, two, and three (in one case) mechanical airgaps to validate this methodology of design

[1]  Frédéric Messine,et al.  Optimal design of electromechanical actuators: a new method based on global optimization , 1998 .

[2]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[3]  T. Lipo,et al.  Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines , 2002, Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344).

[4]  F. Messine,et al.  The electromagnetic actuator design problem: a general and rational approach , 2004, IEEE Transactions on Magnetics.

[5]  B. Nogarede,et al.  Le dimensionnement des actionneurs électriques : un problème de programmation non linéaire , 1993 .

[6]  Frédéric Messine,et al.  A general analytical model of electrical permanent magnet machine dedicated to optimal design , 2003 .

[7]  Bertrand Nogar An Interval Branch and Bound Method Dedicated to the Optimal Design of Piezoelectric Actuators , 2022 .

[8]  Frédéric Messine,et al.  Deterministic global optimization using interval constraint propagation techniques , 2004, RAIRO Oper. Res..

[9]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[10]  Thomas A. Lipo,et al.  Dual-rotor, radial-flux, toroidally-wound, permanent-magnet machines , 2002 .

[11]  Pekka Neittaanmäki,et al.  Inverse Problems and Optimal Design in Electricity and Magnetism , 1996 .

[12]  Jean Bigeon,et al.  A methodology and a tool for the computer aided design with constraints of electrical devices , 1996 .

[13]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[14]  Frédéric Messine,et al.  A Deterministic Global Optimization Algorithm for Design Problems , 2005 .

[15]  Xian Liu,et al.  Modeling and Design Optimization Of Permanent Magnet Motors , 1992 .

[16]  D. Howe,et al.  Thermal modelling of a permanent magnet brushless machine for application in an electro-hydraulic actuator , 2000 .

[18]  Timothy J. E. Miller,et al.  Brushless Permanent-Magnet and Reluctance Motor Drives , 1989 .

[19]  Bertrand Nogarede Machines tournantes : principes et constitution , 2015, Conversion de l'énergie électrique.