Competitive Algorithms for Restricted Caching and Matroid Caching

We study the online restricted caching problem, where each memory item can be placed in only a restricted subset of cache locations. We solve this problem through a more general online caching problem in which the cache is subject to matroid constraints. Our main result is an O( min {d,logr} ·logc)-competitive algorithm for the matroid caching problem, where r and c are the rank and circumference of the matroid, and d is the diameter of an auxiliary graph defined over it. In general, this result guarantees an O(log2 k)-competitiveness for any restricted cache of size k, independently of its structure. In addition, we study the special case of the (n,l)-companion caching problem [8]. For companion caching we prove that our algorithm achieves an optimal competitive factor of O(logn + logl), improving on previous results of [18].

[1]  Joseph Naor,et al.  Towards the randomized k-server conjecture: a primal-dual approach , 2010, SODA '10.

[2]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[3]  Anupam Gupta,et al.  Changing Bases: Multistage Optimization for Matroids and Matchings , 2014, ICALP.

[4]  Enoch Peserico,et al.  Online paging with arbitrary associativity , 2003, SODA '03.

[5]  Joseph Naor,et al.  Randomized Competitive Algorithms for Generalized Caching , 2012, SIAM J. Comput..

[6]  Joseph Naor,et al.  Competitive Analysis via Regularization , 2014, SODA.

[7]  Joseph Naor,et al.  The Design of Competitive Online Algorithms via a Primal-Dual Approach , 2009, Found. Trends Theor. Comput. Sci..

[8]  Joseph Naor,et al.  Unified Algorithms for Online Learning and Competitive Analysis , 2012, COLT.

[9]  Laszlo A. Belady,et al.  A Study of Replacement Algorithms for Virtual-Storage Computer , 1966, IBM Syst. J..

[10]  Joseph Naor,et al.  A primal-dual randomized algorithm for weighted paging , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[11]  Rajeev Raman,et al.  Algorithms — ESA 2002 , 2002, Lecture Notes in Computer Science.

[12]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[13]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[14]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[15]  Artur Czumaj,et al.  An O(log k)-Competitive Algorithm for Generalized Caching , 2012, SODA.

[16]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[17]  Richard J. Enbody,et al.  Optimal replacement is NP-hard for nonstandard caches , 2004, IEEE Transactions on Computers.

[18]  Amos Fiat,et al.  Competitive Paging Algorithms , 1991, J. Algorithms.

[19]  Frank Harary,et al.  Matroids versus graphs , 1969 .

[20]  Marek Chrobak,et al.  Competitive analysis of randomized paging algorithms , 2000, Theor. Comput. Sci..

[21]  Amos Fiat,et al.  Online Companion Caching , 2002, ESA.

[22]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[23]  Noga Alon,et al.  THE ONLINE SET COVER PROBLEM∗ , 2009 .

[24]  Richard J. Enbody,et al.  On-line Restricted Caching , 2001, SODA '01.

[25]  Lyle A. McGeoch,et al.  A strongly competitive randomized paging algorithm , 1991, Algorithmica.

[26]  Leah Epstein,et al.  Calculating lower bounds for caching problems , 2007, Computing.

[27]  William H. Cunningham,et al.  Testing membership in matroid polyhedra , 1984, J. Comb. Theory, Ser. B.

[28]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.