Quantum mechanics, interference, and the brain

In this paper we discuss the use of quantum mechanics to model psychological experiments, starting by sharply contrasting the need of these models to use quantum mechanical nonlocality instead of contextuality. We argue that contextuality, in the form of quantum interference, is the only relevant quantum feature used. Nonlocality does not play a role in those models. Since contextuality is also present in classical models, we propose that classical systems be used to reproduce the quantum models used. We also discuss how classical interference in the brain may lead to contextual processes, and what neural mechanisms may account for it.

[1]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[2]  Bruce J. Gluckman,et al.  Electric field modulation of synchronization in neuronal networks , 2003, Neurocomputing.

[3]  Anthony J. G. Hey,et al.  Feynman Lectures on Computation , 1996 .

[4]  Max Born,et al.  THE INTERPRETATION OF QUANTUM MECHANICS* , 1953, The British Journal for the Philosophy of Science.

[5]  F. Varela,et al.  Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M A Trevisan,et al.  Dynamics of learning in coupled oscillators tutored with delayed reinforcements. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  O. Bertrand,et al.  Oscillatory Synchrony between Human Extrastriate Areas during Visual Short-Term Memory Maintenance , 2001, The Journal of Neuroscience.

[8]  P. Davies,et al.  Does quantum mechanics play a non-trivial role in life? , 2004, Bio Systems.

[9]  Giuseppe Vitiello,et al.  DISSIPATION AND MEMORY CAPACITY IN THE QUANTUM BRAIN MODEL , 1995, quant-ph/9502006.

[10]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[11]  Laszlo E. Szabo,et al.  A local hidden variable theory for the GHZ experiment , 2002 .

[12]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[13]  D. Ornstein,et al.  Statistical properties of chaotic systems , 1991 .

[14]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[15]  Frank C. Hoppensteadt,et al.  Synaptic organizations and dynamical properties of weakly connected neural oscillators , 1996, Biological Cybernetics.

[16]  Eugene M. Izhikevich,et al.  Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory , 1999, IEEE Trans. Neural Networks.

[17]  Erwin Schrödinger Science And Humanism , 1951 .

[18]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[19]  P. Suppes,et al.  Quantum Mechanics and the Brain , 2007 .

[20]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[21]  Patrick Suppes,et al.  Violation of bell's inequalities with a local theory of photons , 1996 .

[22]  W. Freeman,et al.  Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics , 2005, q-bio/0511037.

[23]  P Suppes,et al.  Brain-wave representation of words by superposition of a few sine waves. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[25]  Arthur Fine,et al.  Some local models for correlation experiments , 1982, Synthese.

[26]  L. M. Ricciardi,et al.  Brain and physics of many-body problems , 1967, Kybernetik.

[27]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[28]  David T. J. Liley,et al.  Simulation of electrocortical waves , 1995, Biological Cybernetics.

[29]  Roland Omnès The Interpretation of Quantum Mechanics , 1987 .

[30]  J. Eccles Do mental events cause neural events analogously to the probability fields of quantum mechanics? , 1986, Proceedings of the Royal Society of London. Series B, Biological sciences.

[31]  Yukinari Kurita Indispensable role of quantum theory in the brain dynamics. , 2005, Bio Systems.

[32]  G. Tononi,et al.  Breakdown of Cortical Effective Connectivity During Sleep , 2005, Science.

[33]  Gerard 't Hooft Quantum Mechanics and Determinism , 2001 .

[34]  Patrick Suppes,et al.  Concept Learning Rates and Transfer Performance of Several Multivariate Neural Network Models , 2003 .

[35]  Frank C. Hoppensteadt,et al.  Synaptic organizations and dynamical properties of weakly connected neural oscillators II. Learning phase information , 1996, Biological Cybernetics.

[36]  H Sompolinsky,et al.  Global processing of visual stimuli in a neural network of coupled oscillators. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Eccles,et al.  Quantum aspects of brain activity and the role of consciousness. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Eccles,et al.  A unitary hypothesis of mind-brain interaction in the cerebral cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[39]  Roman Borisyuk,et al.  Object selection by an oscillatory neural network. , 2002, Bio Systems.

[40]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[41]  Mark S. Goldman,et al.  Items as Context: Effects of Item Order and Ambiguity on Factor Structure , 2006 .

[42]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[43]  Roger Penrose,et al.  Précis of The Emperor's New Mind: Concerning computers, minds, and the laws of physics , 1990, Behavioral and Brain Sciences.

[44]  T. Sejnowski,et al.  Synchronous oscillatory activity in sensory systems: new vistas on mechanisms , 1997, Current Opinion in Neurobiology.

[45]  V I Nekorkin,et al.  Self-referential phase reset based on inferior olive oscillator dynamics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Hameroff Quantum computation in brain microtubules? The Penrose-Hameroff 'Orch OR' model of consciousness , 1998 .

[47]  D. P. Russell,et al.  Increased Synchronization of Neuromagnetic Responses during Conscious Perception , 1999, The Journal of Neuroscience.

[48]  Kapuściński Wj,et al.  Science and Humanism , 1935, Nature.

[49]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[50]  Luiz Pinguelli Rosa,et al.  Quantum models of the mind: are they compatible with environment decoherence? , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Donald A. Sofge,et al.  Quantum interaction : Papers from the AAAI Spring Symposium : Technical Report SS-07-08 , 2007 .

[52]  Terrence J. Sejnowski,et al.  Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models , 1996, Journal of Computational Neuroscience.

[53]  R. Morrow,et al.  Foundations of Quantum Mechanics , 1968 .

[54]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[55]  Patrick Suppes,et al.  A random-walk approach to interference , 1994 .

[56]  Eugene M. Izhikevich,et al.  Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting , 2006 .

[57]  Patrick Suppes,et al.  Diffraction with well-defined photon trajectories: A foundational analysis , 1994 .

[58]  William G. Faris Shadows of the Mind: A Search for the Missing Science of Consciousness , 1997 .

[59]  Andrei Khrennikov,et al.  Quantum-like brain: "Interference of minds". , 2006, Bio Systems.

[60]  Sylvain Meignen,et al.  Synchronization and desynchronization of neural oscillators , 1999, Neural Networks.

[61]  Mario Beauregard,et al.  Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction , 2004, Philosophical Transactions of the Royal Society B: Biological Sciences.

[62]  S. Hameroff,et al.  Quantum computation in brain microtubules: decoherence and biological feasibility. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[64]  Emmanuel Haven,et al.  The importance of probability interference in social science: rationale and experiment , 2007, 0709.2802.

[65]  Mitsuo Kawato,et al.  Two coupled oscillators as a model for the coordinated finger tapping by both hands , 1980, Biological Cybernetics.

[66]  Carlo Rovelli,et al.  On Quantum Mechanics , 1994 .

[67]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[68]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[69]  Patrick Suppes,et al.  When are Probabilistic Explanations Possible , 1981 .

[70]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[71]  Andrei Khrennikov,et al.  The Principle of Supplementarity: A Contextual Probabilistic Viewpoint to Complementarity, the Interference of Probabilities and Incompatibility of Variables in Quantum Mechanics , 2005 .

[72]  Joseph P. Zbilut,et al.  Some remarks on an experiment suggesting quantum-like behavior of cognitive entities and formulation of an abstract quantum mechanical formalism to describe cognitive entity and its dynamics , 2007 .

[73]  Elena Leznik,et al.  Electrotonically Mediated Oscillatory Patterns in Neuronal Ensembles: An In Vitro Voltage-Dependent Dye-Imaging Study in the Inferior Olive , 2002, The Journal of Neuroscience.

[74]  T. Nieuwenhuizen What are quantum fluctuations , 2007 .

[75]  H. Stapp The importance of quantum decoherence in brain processes , 2000, quant-ph/0010029.

[76]  Y. Sinai,et al.  Dynamical systems with elastic reflections , 1970 .

[77]  E. Harth,et al.  Electric Fields of the Brain: The Neurophysics of Eeg , 2005 .

[78]  G. Laurent,et al.  Multiplexing using synchrony in the zebrafish olfactory bulb , 2004, Nature Neuroscience.

[79]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[80]  G. Edelman,et al.  Consciousness and Complexity , 1998 .

[81]  H. Everett "Relative State" Formulation of Quantum Mechanics , 1957 .

[82]  Patrick Suppes,et al.  Photons, billiards and chaos , 1996 .

[83]  D. Bohm A new theory of the relationship of mind and matter. , 1986 .

[84]  M RochaeSilva Science and humanism , 1967 .

[85]  L. M. Ward,et al.  Synchronous neural oscillations and cognitive processes , 2003, Trends in Cognitive Sciences.

[86]  Karl Svozil On Counterfactuals and Contextuality , 2004 .

[87]  R. Jahn,et al.  On the quantum mechanics of consciousness, with application to anomalous phenomena , 1986 .

[88]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[89]  T. Sejnowski,et al.  Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. , 1991, Journal of neurophysiology.

[90]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[91]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[92]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[93]  W. Freeman Nonlinear dynamics of paleocortex manifested in the olfactory EEG , 1979, Biological Cybernetics.

[94]  Fred H. Thaheld,et al.  Biological nonlocality and the mind-brain interaction problem: comments on a new empirical approach. , 2003, Bio Systems.

[95]  Viola Schiaffonati,et al.  Representation and Invariance of Scientific Structures , 2006 .

[96]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[97]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[98]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[99]  C. Koch,et al.  Quantum mechanics in the brain , 2006, Nature.

[100]  W. Ebeling Law and Prediction in the Light of Chaos Research , 1999 .

[101]  P. Rosenbaum,et al.  Conditional Association and Unidimensionality in Monotone Latent Variable Models , 1985 .

[102]  DeLiang Wang,et al.  Emergent synchrony in locally coupled neural oscillators , 1995, IEEE Trans. Neural Networks.