Labelling of cells with quantum dots

Colloidal quantum dots are semiconductor nanocrystals well dispersed in a solvent. The optical properties of quantum dots, in particular the wavelength of their fluorescence, depend strongly on their size. Because of their reduced tendency to photobleach, colloidal quantum dots are interesting fluorescence probes for all types of labelling studies. In this review we will give an overview on how quantum dots have been used so far in cell biology. In particular we will discuss the biologically relevant properties of quantum dots and focus on four topics: labelling of cellular structures and receptors with quantum dots, incorporation of quantum dots by living cells, tracking the path and the fate of individual cells using quantum dot labels, and quantum dots as contrast agents.

[1]  J. Rémy,et al.  Protective copolymers for nonviral gene vectors: synthesis, vector characterization and application in gene delivery , 2000, Gene Therapy.

[2]  L. Liz‐Marzán,et al.  Chemistry of nanosized silica-coated metal particles-EM-study , 1997 .

[3]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[4]  Erica Klarreich,et al.  Biologists join the dots , 2001, Nature.

[5]  G. Albrecht-Buehler,et al.  A quantitative description of the extension and retraction of surface protrusions in spreading 3T3 mouse fibroblasts , 1976, The Journal of cell biology.

[6]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[7]  F. Szoka,et al.  Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. , 1996, Biochemistry.

[8]  J. Nelson,et al.  Improved method for the production of gold colloid monolayers for use in the phagokinetic track assay for cell motility. , 2000, Analytical biochemistry.

[9]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[10]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[11]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[12]  Steven R. Cordero,et al.  Photo-activated luminescence of CdSe quantum dot monolayers , 2000 .

[13]  James McBride,et al.  Targeting cell surface receptors with ligand-conjugated nanocrystals. , 2002, Journal of the American Chemical Society.

[14]  A. Sutherland,et al.  Quantum dots as luminescent probes in biological systems , 2002 .

[15]  T. Niidome,et al.  Gene Therapy Progress and Prospects: Nonviral vectors , 2002, Gene Therapy.

[16]  J. Nedeljković,et al.  Photoenhancement of Luminescence in Colloidal CdSe Quantum Dot Solutions , 2003 .

[17]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[18]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .

[19]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[20]  Laura A. Swafford,et al.  Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box , 2002 .

[21]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[22]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[23]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[24]  S. Schuster,et al.  Electroporation of Antibodies into Mammalian Cells , 1994 .

[25]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[26]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[27]  T Andrew Taton Two-way traffic , 2003, Nature materials.

[28]  Horst Weller,et al.  Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals , 2002 .

[29]  K. Roth,et al.  Combined Tyramide Signal Amplification and Quantum Dots for Sensitive and Photostable Immunofluorescence Detection , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[30]  R. Uren,et al.  Cancer surgery joins the dots , 2004, Nature Biotechnology.

[31]  A. Triller,et al.  Fast and reversible trapping of surface glycine receptors by gephyrin , 2001, Nature Neuroscience.

[32]  L. Malerød,et al.  Clathrin-dependent endocytosis. , 2004, The Biochemical journal.

[33]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[34]  Paul Mulvaney,et al.  Silica encapsulation of quantum dots and metal clusters , 2000 .

[35]  Igor Nabiev,et al.  Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells. , 2004, Analytical biochemistry.

[36]  Caroline Seydel,et al.  Quantum Dots Get Wet , 2003, Science.

[37]  L. Wang,et al.  Electronic Structure of Semiconductor Nanocrystals , 2006 .

[38]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Bustamante,et al.  Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots , 2002 .

[40]  C. Plank,et al.  Application of membrane-active peptides for drug and gene delivery across cellular membranes. , 1998, Advanced drug delivery reviews.

[41]  A Paul Alivisatos,et al.  Quantum-dot-based cell motility assay. , 2003, Science's STKE : signal transduction knowledge environment.

[42]  Thomas M. Jovin,et al.  Quantum dots finally come of age , 2003, Nature Biotechnology.

[43]  L. Liz‐Marzán,et al.  Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure , 1998 .

[44]  L E Rikans,et al.  Mechanisms of cadmium‐mediated acute hepatotoxicity , 2000, Journal of biochemical and molecular toxicology.

[45]  Wilfried van Sark,et al.  Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots , 2002 .

[46]  Louis E. Brus,et al.  The Quantum Mechanics of Larger Semiconductor Clusters ("Quantum Dots") , 1990 .

[47]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[48]  C. Bräuchle,et al.  Single-molecule optical switching of terrylene in p-terphenyl , 1997, Nature.

[49]  M. Petruska,et al.  An amphiphilic approach to nanocrystal quantum dot-titania nanocomposites. , 2004, Journal of the American Chemical Society.

[50]  G. Albrecht-Buehler,et al.  Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin , 1977, Cell.

[51]  Chia-Chun Chen,et al.  Self-Assembly of Monolayers of Cadmium Selenide Nanocrystals with Dual Color Emission , 1999 .

[52]  M. Bawendi,et al.  Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. , 2003, Journal of the American Chemical Society.

[53]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[54]  Felix Koberling,et al.  Oxygen‐Induced Blinking of Single CdSe Nanocrystals , 2001 .

[55]  J. Jansson,et al.  Monitoring of GFP-tagged bacterial cells. , 1998, Methods in molecular biology.

[56]  R. Auerbach,et al.  A new microtechnique for quantitating cell movement in vitro using polystyrene bead monolayers. , 1984, Journal of immunological methods.

[57]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[58]  K Mechtler,et al.  The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. , 1994, The Journal of biological chemistry.

[59]  M. Rosen,et al.  The Electronic Structure of Semiconductor Nanocrystals1 , 2000 .

[60]  Weihong Tan,et al.  Bioconjugated Luminescent Nanoparticles for Biological Applications , 2003 .

[61]  S. Nie,et al.  Molecular profiling of single cells and tissue specimens with quantum dots. , 2003, Trends in biotechnology.

[62]  Judith Klumperman,et al.  Electron microscopy in cell biology: integrating structure and function. , 2003, Nature reviews. Molecular cell biology.

[63]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[64]  K. Zatloukal,et al.  Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[66]  R. Weissleder,et al.  Cellular Uptake and Trafficking of a Prototypical Magnetic Iron Oxide Label In Vitro , 1995, Investigative radiology.

[67]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Munro Organelle identity and the organization of membrane traffic , 2004, Nature Cell Biology.

[69]  Jürgen Roth,et al.  The silver anniversary of gold: 25 years of the colloidal gold marker system for immunocytochemistry and histochemistry , 1996, Histochemistry and Cell Biology.

[70]  H. Mattoussi,et al.  Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. , 2002, Analytical chemistry.

[71]  Sandra J. Rosenthal,et al.  Bar-coding biomolecules with fluorescent nanocrystals , 2001, Nature Biotechnology.

[72]  C. Murphy,et al.  Temperature- and Salt-Dependent Binding of Long DNA to Protein-Sized Quantum Dots: Thermodynamics of “Inorganic Protein”−DNA Interactions , 2000 .

[73]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[74]  C. Mirkin,et al.  A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. , 2000, Analytical chemistry.

[75]  Hedi Mattoussi,et al.  Avidin: a natural bridge for quantum dot-antibody conjugates. , 2002, Journal of the American Chemical Society.

[76]  Cornelis J. Weijer,et al.  Visualizing Signals Moving in Cells , 2003, Science.

[77]  Atsushi Miyawaki,et al.  Lighting up cells: labelling proteins with fluorophores. , 2003, Nature cell biology.

[78]  M. Kondoh,et al.  Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. , 2002, Toxicology.

[79]  M. Bruchez,et al.  Lighting up cells with quantum dots. , 2003, BioTechniques.

[80]  F Tokumasu,et al.  Development and application of quantum dots for immunocytochemistry of human erythrocytes , 2003, Journal of microscopy.

[81]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[82]  D. Acosta,et al.  Cadmium toxicity in primary cultures of rat hepatocytes. , 1982, Journal of toxicology and environmental health.

[83]  Ralph Weissleder,et al.  Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells , 2000, Nature Biotechnology.

[84]  M. Hwang,et al.  Corrigendum: Human zinc fingers as building blocks in the construction of artificial transcription factors , 2003, Nature Biotechnology.

[85]  C. Caskey,et al.  Non-viral approaches to gene therapy. , 1995, British medical bulletin.

[86]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[87]  R. Tsien,et al.  On/off blinking and switching behaviour of single molecules of green fluorescent protein , 1997, Nature.

[88]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[89]  Matthew Cotten,et al.  Delivery of drugs, proteins and genes into cells using transferrin as a ligand for receptor-mediated endocytosis , 1994 .

[90]  M. Bawendi,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular Imaging.

[91]  C. Ong,et al.  Sodium selenite‐induced oxidative stress and apoptosis in human hepatoma HepG2 cells , 1999, International journal of cancer.

[92]  Kenji Yamamoto,et al.  Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. , 2003, Biochemical and biophysical research communications.

[93]  George P. Anderson,et al.  Bioconjugation of Highly Luminescent Colloidal CdSe–ZnS Quantum Dots with an Engineered Two-Domain Recombinant Protein , 2001 .

[94]  D. Woodley,et al.  Human keratinocytes make uniquely linear phagokinetic tracks. , 1994, Dermatology.

[95]  M. Bruchez,et al.  Optical coding of mammalian cells using semiconductor quantum dots. , 2004, Analytical biochemistry.

[96]  W. Anderson,et al.  Gene-marking to trace origin of relapse after autologous bone-marrow transplantation , 1993, The Lancet.

[97]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[98]  M. Bruchez,et al.  Corrigendum: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[99]  W. Shen,et al.  Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. , 2003, Advanced drug delivery reviews.

[100]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[101]  L. Pelkmans,et al.  Insider information: what viruses tell us about endocytosis. , 2003, Current opinion in cell biology.

[102]  R. Pepperkok,et al.  Electroporation of Cells , 1994 .

[103]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[104]  A Paul Alivisatos,et al.  Sorting fluorescent nanocrystals with DNA. , 2002, Journal of the American Chemical Society.

[105]  P. Dunnill,et al.  Schizosaccharomyces pombe fed-batch culture in the presence of cadmium for the production of cadmium sulphide quantum semiconductor dots , 2002 .

[106]  Peter Mitchell,et al.  Turning the spotlight on cellular imaging , 2001, Nature Biotechnology.

[107]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[108]  D. Scherman,et al.  A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Immunogold labeling in scanning electron microscopy , 1996 .

[110]  M. Kowshik,et al.  Microbial synthesis of semiconductor PbS nanocrystallites , 2002 .

[111]  J. Bacri,et al.  Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. , 2003, Biomaterials.

[112]  A. Krüger,et al.  Urokinase-type plasminogen activator (uPA) and its receptor (uPAR): development of antagonists of uPA/uPAR interaction and their effects in vitro and in vivo. , 2003, Current pharmaceutical design.

[113]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[114]  T. Emrick,et al.  The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles. , 2003, Chemical communications.

[115]  Yong Taik Lim,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular imaging.

[116]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[117]  Jessica O. Winter,et al.  Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells , 2001 .

[118]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[119]  A. Triller,et al.  Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons , 2000, The European journal of neuroscience.

[120]  K. H. Nealson,et al.  Quantum Dots as Strain- and Metabolism-Specific Microbiological Labels , 2003, Applied and Environmental Microbiology.

[121]  A. Alivisatos,et al.  Nanocrystals: Building blocks for modern materials design , 1997 .

[122]  Ma Hui,et al.  Quantum dot-labeled trichosanthin , 2000 .

[123]  M. Osborn Immunofluorescence microscopy of cultured cells. , 2006 .

[124]  A. Van Orden,et al.  Resonant energy-transfer sensor , 2003, Nature materials.

[125]  Yu-Li Wang Microinjection of Proteins into Somatic Cells: Needle Microinjection and Scrape Loading , 1994 .

[126]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[127]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[128]  C. Green,et al.  Gap junction distribution in adult mammalian myocardium revealed by an anti-peptide antibody and laser scanning confocal microscopy. , 1991, Journal of cell science.

[129]  A Paul Alivisatos,et al.  Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. , 2003, Analytical chemistry.

[130]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[131]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[132]  Wolfgang J. Parak,et al.  Quantum Dot-Based Cell Motility Assay , 2005, Science's STKE.

[133]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[134]  Shimon Weiss,et al.  Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling , 2001 .

[135]  Xiaogang Peng,et al.  Control of photoluminescence properties of CdSe nanocrystals in growth. , 2002, Journal of the American Chemical Society.

[136]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[137]  Xiaogang Peng,et al.  Stabilization of inorganic nanocrystals by organic dendrons. , 2002, Journal of the American Chemical Society.

[138]  H. Höfler,et al.  Dynamics of cell adhesion and motility in living cells is altered by a single amino acid change in E-cadherin fused to enhanced green fluorescent protein. , 2004, Cell motility and the cytoskeleton.

[139]  Igor Nabiev,et al.  Highly Stable Fluorescent Nanocrystals as a Novel Class of Labels for Immunohistochemical Analysis of Paraffin-Embedded Tissue Sections , 2002, Laboratory Investigation.

[140]  F. Szoka,et al.  Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes* , 2003, Journal of Biological Chemistry.

[141]  Joseph Rosenecker,et al.  Enhancing and targeting nucleic acid delivery by magnetic force , 2003, Expert opinion on biological therapy.

[142]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[143]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[144]  A. Efros,et al.  Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot , 1997 .

[145]  Peter Reiss,et al.  Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion , 2002 .

[146]  Weidong Yang,et al.  Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods , 2001, Science.

[147]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[148]  A. Meunier,et al.  In vivo tracking of bone marrow fibroblasts with fluorescent carbocyanine dye. , 2001, Journal of biomedical materials research.

[149]  Wei Chen,et al.  Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates , 2002 .

[150]  Stuart K. Williams,et al.  Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. , 1991, Journal of cell science.

[151]  H. Pearson Developmental biology: Your destiny, from day one , 2002, Nature.

[152]  Gordon Keller,et al.  Development of definitive endoderm from embryonic stem cells in culture , 2004, Development.

[153]  G. Albrecht-Buehler,et al.  The phagokinetic tracks of 3T3 cells , 1977, Cell.