Patterns and Features of Families of Traveling Waves in Large-Scale Neuronal Networks

We study traveling wave solutions of a system of integro‐differential equations which describe the activity of large‐scale networks of excitatory neurons on spatially extended domains. The independent variables are the activity level u of a population of excitatory neurons, which have long range connections, and a recovery variable v. We have found a critical value of the parameter β ($\beta_* > 0$) that appears in the equation for v, at which the eigenvalues of the linearization of the system around the rest state $(u,v)=(0,0)$ change from real to complex. In contrast to previous studies which analyzed properties of traveling waves when the eigenvalues are real, we examine the range $\beta > \beta_*$, where the eigenvalues are complex. In this case we show that there is a range of parameters over which families of wave fronts and 1‐pulse and more general N‐pulse waves can coexist as stable solutions. In two space dimensions our numerical experiments show how single‐ring and multiring waves form in respon...

[1]  Charles S. Peskin,et al.  Mathematical aspects of heart physiology , 1975 .

[2]  Carlo R. Laing,et al.  PDE Methods for Nonlocal Models , 2003, SIAM J. Appl. Dyn. Syst..

[3]  B. Connors,et al.  Initiation, Propagation, and Termination of Epileptiform Activity in Rodent Neocortex In Vitro Involve Distinct Mechanisms , 2005, The Journal of Neuroscience.

[4]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[5]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[6]  J. Allan Hobson,et al.  Dreaming: An Introduction to the Science of Sleep , 2003 .

[7]  B. Ermentrout,et al.  Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Philip Holmes,et al.  Simple Neural Networks that Optimize Decisions , 2005, Int. J. Bifurc. Chaos.

[9]  B. Connors,et al.  Periodicity and directionality in the propagation of epileptiform discharges across neocortex. , 1988, Journal of neurophysiology.

[10]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: I. Traveling Fronts and Pulses , 2001, SIAM J. Appl. Math..

[11]  L. F. Abbott,et al.  Propagation of excitation in neural network models , 1993 .

[12]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[13]  Paul C. Bressloff,et al.  Breathing Pulses in an Excitatory Neural Network , 2004, SIAM J. Appl. Dyn. Syst..

[14]  P. Bressloff,et al.  Breathers in two-dimensional neural media. , 2005, Physical review letters.

[15]  H. Longuet-Higgins Understanding the Brain , 1968, Nature.

[16]  Jack D. Cowan,et al.  CONNECTIVITY AND THE DYNAMICS OF INTEGRATE-AND-FIRE NEURAL NETWORKS , 1994 .

[17]  D. Kleinfeld,et al.  Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study. , 1994, Journal of neurophysiology.

[18]  Jonathan D. Cohen,et al.  Simple Neural Networks that Optimize Decisions , 2006 .

[19]  Bard Ermentrout,et al.  Nonlinear Coupling near a Degenerate Hopf (Bautin) Bifurcation , 2003, SIAM J. Appl. Math..

[20]  J. Milton,et al.  Epilepsy as a Dynamic Disease , 2003 .

[21]  吴立文 Epilepsy as a Dynamic Disease , 2004 .

[22]  S. Hastings Single and Multiple Pulse Waves for the FitzHugh–Nagumo , 1982 .

[23]  Yixin Guo,et al.  Existence and stability of standing pulses in neural networks , 2003 .

[24]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[25]  Bard Ermentrout,et al.  Spatially Structured Activity in Synaptically Coupled Neuronal Networks: II. Lateral Inhibition and Standing Pulses , 2001, SIAM J. Appl. Math..

[26]  B. Burns Some properties of isolated cerebral cortex in the unanaesthetized cat , 1951, The Journal of physiology.

[27]  J. Hobson,et al.  The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. , 1977, The American journal of psychiatry.

[28]  Jian-Young Wu,et al.  Propagating Activation during Oscillations and Evoked Responses in Neocortical Slices , 1999, The Journal of Neuroscience.

[29]  C. Eugene Wayne,et al.  Existence and Stability of Traveling Pulses in a Continuous Neuronal Network , 2005, SIAM J. Appl. Dyn. Syst..

[30]  D Golomb,et al.  Models of neuronal transient synchrony during propagation of activity through neocortical circuitry. , 1998, Journal of neurophysiology.

[31]  Carson C. Chow,et al.  Existence and Stability of Standing Pulses in Neural Networks: II. Stability , 2004, SIAM J. Appl. Dyn. Syst..

[32]  D. Kleinfeld,et al.  Visual stimuli induce waves of electrical activity in turtle cortex. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Benhur Aysin,et al.  Direct mechanical stimulation of brainstem modulates cardiac rhythm and repolarization in humans. , 2002, Journal of electrocardiology.

[34]  J. Glanz,et al.  Mastering the Nonlinear Brain , 1997, Science.

[35]  B. Burns,et al.  The function and structure of some neurones in the cat's cerebral cortex , 1952, The Journal of physiology.

[36]  S. Schiff,et al.  Control of traveling waves in the Mammalian cortex. , 2005, Physical review letters.

[37]  Y. Amitai,et al.  Propagating neuronal discharges in neocortical slices: computational and experimental study. , 1997, Journal of neurophysiology.

[38]  B D Burns,et al.  Some properties of the cat's isolated cerebral cortex , 1950, The Journal of physiology.

[39]  Jian-Young Wu,et al.  Spiral Waves in Disinhibited Mammalian Neocortex , 2004, The Journal of Neuroscience.

[40]  S. Coombes,et al.  Bumps, breathers, and waves in a neural network with spike frequency adaptation. , 2005, Physical review letters.

[41]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[42]  Y. Lam,et al.  Odors Elicit Three Different Oscillations in the Turtle Olfactory Bulb , 2000, The Journal of Neuroscience.

[43]  R. Traub,et al.  Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. , 1988, Journal of neurophysiology.

[44]  Linghai Zhang,et al.  On stability of traveling wave solutions in synaptically coupled neuronal networks , 2003, Differential and Integral Equations.

[45]  David Pinto,et al.  Mathematical neuroscience: from neurons to circuits to systems , 2003, Journal of Physiology-Paris.

[46]  Paul C. Bressloff,et al.  Front Bifurcations in an Excitatory Neural Network , 2004, SIAM J. Appl. Math..

[47]  Stephen Coombes,et al.  Evans Functions for Integral Neural Field Equations with Heaviside Firing Rate Function , 2004, SIAM J. Appl. Dyn. Syst..

[48]  C. Petersen,et al.  Visualizing the Cortical Representation of Whisker Touch: Voltage-Sensitive Dye Imaging in Freely Moving Mice , 2006, Neuron.

[49]  G. Brindley,et al.  THE UNDERSTANDING OF THE BRAIN , 1973 .

[50]  Barry W. Connors,et al.  Epilepsy: Generation of epileptiform discharge by local circuits of neocortex , 1993 .

[51]  John G. Milton,et al.  The Electroencephalogram (EEG): A Measure of Neural Synchrony , 2003 .

[52]  Björn Sandstede,et al.  Evans Functions and Nonlinear Stability of Traveling Waves in Neuronal Network Models , 2007, Int. J. Bifurc. Chaos.