The Semidiscrete Filtered Backprojection Algorithm Is Optimal for Tomographic Inversion

The filtered backprojection algorithm is probably the most often used reconstruction algorithm in two-dimensional computerized tomography. For a semidiscrete version in the parallel scanning geometry we prove optimal L2-convergence rates for density distributions in Sobolev spaces. Additionally we show L2-convergence without rates when the density distribution is only in L2. The key to success is a new representation of the filtered backprojection which enables us to apply techniques from approximation theory. Our analysis provides further a modification of the Shepp--Logan reconstruction filter with an improved convergence behavior. Numerical experiments in the fully discrete setting reproduce the theoretical predictions.

[1]  F. Natterer,et al.  Mathematical problems of computerized tomography , 1983, Proceedings of the IEEE.

[2]  Erik L. Ritman,et al.  Local Tomography II , 1997, SIAM J. Appl. Math..

[3]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[4]  Wolfgang Dahmen,et al.  Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .

[5]  Andreas Rieder,et al.  Approximate Inverse Meets Local Tomography , 2000 .

[6]  Thomas Schuster,et al.  The approximate inverse in action II: convergence and stability , 2003, Math. Comput..

[7]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[8]  Kennan T. Smith,et al.  Mathematical foundations of computed tomography. , 1985, Applied optics.

[9]  P. G. Lemari'e,et al.  Ondelettes `a localisation exponentielle , 1988 .

[10]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  B. F. Logan,et al.  The Fourier reconstruction of a head section , 1974 .

[13]  J. Bramble,et al.  Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .

[14]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[15]  Erik L. Ritman,et al.  High-resolution computed tomography from efficient sampling , 2000 .

[16]  D. A. Popov On convergence of a class of algorithms for the inversion of the numerical Radon transform , 1990 .

[17]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[18]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .