The Semidiscrete Filtered Backprojection Algorithm Is Optimal for Tomographic Inversion
暂无分享,去创建一个
[1] F. Natterer,et al. Mathematical problems of computerized tomography , 1983, Proceedings of the IEEE.
[2] Erik L. Ritman,et al. Local Tomography II , 1997, SIAM J. Appl. Math..
[3] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[4] Wolfgang Dahmen,et al. Wavelet approximation methods for pseudodifferential equations: I Stability and convergence , 1994 .
[5] Andreas Rieder,et al. Approximate Inverse Meets Local Tomography , 2000 .
[6] Thomas Schuster,et al. The approximate inverse in action II: convergence and stability , 2003, Math. Comput..
[7] Kennan T. Smith,et al. Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .
[8] Kennan T. Smith,et al. Mathematical foundations of computed tomography. , 1985, Applied optics.
[9] P. G. Lemari'e,et al. Ondelettes `a localisation exponentielle , 1988 .
[10] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[11] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[12] B. F. Logan,et al. The Fourier reconstruction of a head section , 1974 .
[13] J. Bramble,et al. Estimation of Linear Functionals on Sobolev Spaces with Application to Fourier Transforms and Spline Interpolation , 1970 .
[14] I. J. Schoenberg. Cardinal Spline Interpolation , 1987 .
[15] Erik L. Ritman,et al. High-resolution computed tomography from efficient sampling , 2000 .
[16] D. A. Popov. On convergence of a class of algorithms for the inversion of the numerical Radon transform , 1990 .
[17] T. Dupont,et al. Polynomial approximation of functions in Sobolev spaces , 1980 .
[18] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .