An investigation into the melting of silicon nanoclusters using molecular dynamics simulations

Using the Stillinger-Weber (SW) potential model, we have performed molecular dynamics (MD) simulations to investigate the melting of silicon nanoclusters comprising a maximum of 9041 atoms. This study investigates the size, surface energy and root mean square displacement (RMSD) characteristics of the silicon nanoclusters as they undergo a heating process. The numerical results reveal that an intermediate nanocrystal regime exists for clusters with more than 357 atoms. Within this regime, a linear relationship exists between the cluster size and its melting temperature. It is found that melting of the silicon nanoclusters commences at the surface and that T(m,N) = T(m,Bulk)-αN(-1/3). Therefore, the extrapolated melting temperature of the bulk with a surface decreases from T(m,Bulk) = 1821 K to a value of T(m,357) = 1380 K at the lower limit of the intermediate nanocrystal regime.

[1]  S. A. Cho,et al.  Role of lattice structure on the Lindemann fusion theory of metals , 1982 .

[2]  J. Bilello,et al.  The surface energy of Si, GaAs, and GaP , 1981 .

[3]  Estela Blaisten-Barojas,et al.  Properties of Silicon Nanoparticles: A Molecular Dynamics Study , 1996 .

[4]  A tight-binding molecular dynamics simulation of the melting and solidification of silicon , 1994 .

[5]  William A. Goddard,et al.  Melting and crystallization in Ni nanoclusters: The mesoscale regime , 2001 .

[6]  Wang,et al.  Thermal disintegration of carbon fullerenes. , 1993, Physical review. B, Condensed matter.

[7]  Lai,et al.  Size-Dependent Melting Properties of Small Tin Particles: Nanocalorimetric Measurements. , 1996, Physical review letters.

[8]  C. Pearson,et al.  Hybrid silicon-organic nanoparticle memory device , 2003 .

[9]  C. B. Carter,et al.  Superhard silicon nanospheres , 2003 .

[10]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[11]  Feng Ding,et al.  Structural transition of Si clusters and their thermodynamics , 2001 .

[12]  Flytzanis,et al.  Simulation of the melting behavior of small silicon clusters. , 1995, Physical review. B, Condensed matter.

[13]  Alonso,et al.  Ab Initio Photoabsorption Spectra and Structures of Small Semiconductor and Metal Clusters. , 1996, Physical review letters.

[14]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[15]  A. Shvartsburg,et al.  Solid clusters above the bulk melting point , 2000, Physical review letters.

[16]  Yoshio Waseda,et al.  The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids , 1980 .

[17]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[18]  A. Naumovets,et al.  Electron and light emission from island metal films and generation of hot electrons in nanoparticles , 2000 .

[19]  X. Bian,et al.  Melting of Cu nanoclusters by molecular dynamics simulation , 2003 .