Graph complements of circular graphs

In this report, we study graph complements Gn of cyclic graphs Cn or graph complements G + n of path graphs. Gn are circulant, vertex-transitive, claw-free, strongly regular, Hamiltonian graphs with a Zn symmetry and Shannon capacity 2. Also the Wiener and Harary index are known. The explicitly known adjacency matrix spectrum leads to explicit spectral zeta function and tree or forest quantities. The forest-tree ratio of Gn converge to e in the limit when n goes to infinity. The graphs Gn are all Cayley graphs and so Platonic in the sense that they all have isomorphic unit spheres G+n−3. The graphs G3d+3 are homotop to wedge sums of two d-spheres and G3d+2, G3d+4 are homotop to d-spheres, G + 3d+1 are contractible, G+3d+2, G + 3d+3 are homotop to d-spheres. Since disjoint unions are dual to Zykov joins, graph complements of all 1-dimensional discrete manifolds G are homotop to either a point, a sphere or a wedge sums of spheres. If the length of every connected component of a 1-manifold is not divisible by 3, the graph complement of G must be a sphere. In general, the graph complement of a forest is either contractible or a sphere. It also follows that all induced strict subgraphs of Gn are either contractible or homotop to spheres. The f-vectors Gn or G + n satisfy a hyper Pascal triangle relation, the total number of simplices are hyper Fibonacci numbers. The simplex generating functions are Jacobsthal polynomials, generating functions of k-king configurations on a circular chess board. While the Euler curvature of circle complements Gn is constant by symmetry, the discrete Gauss-Bonnet curvature of path complements Gn can be expressed explicitly from the generating functions. There is now a non-trivial 6-periodic Gauss-Bonnet curvature universality in the complement of Barycentric limits. The Brouwer-Lefschetz fixed point theorem produces a 12-periodicity of the Lefschetz numbers of all graph automorphisms of Gn. There is also a 12-periodicity of Wu characteristic. This corresponds to 4-periodicity in dimension as n → n+ 3 is homotop to a suspension. These are all manifestations of stable homotopy features, but purely combinatorial.

[1]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[2]  Oliver Knill,et al.  Coloring graphs using topology , 2014, ArXiv.

[3]  Isospectral deformations of the Dirac operator , 2013, 1306.5597.

[4]  Oliver Knill,et al.  Graphs with Eulerian unit spheres , 2015, ArXiv.

[5]  Oliver Knill On Atiyah-Singer and Atiyah-Bott for finite abstract simplicial complexes , 2017, ArXiv.

[6]  Oliver Knill A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.

[7]  Oliver Knill A simple sphere theorem for graphs , 2019, ArXiv.

[8]  Oliver Knill,et al.  Complexes, Graphs, Homotopy, Products and Shannon Capacity , 2020, ArXiv.

[9]  Oliver Knill,et al.  Counting rooted forests in a network , 2013, ArXiv.

[10]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[11]  D. Gale The Game of Hex and the Brouwer Fixed-Point Theorem , 1979 .

[12]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[13]  O. Knill The counting matrix of a simplicial complex , 2019, 1907.09092.

[14]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[15]  Oliver Knill,et al.  The Cohomology for Wu Characteristics , 2018, ArXiv.

[16]  Steve Fisk Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .

[17]  Klaudia Frankfurter,et al.  Graph Theory 1736 1936 , 2016 .

[18]  Angelika Mueller,et al.  Transformation Groups In Differential Geometry , 2016 .

[19]  Oliver Knill,et al.  The Dirac operator of a graph , 2013, ArXiv.

[20]  Oliver Knill,et al.  Energized simplicial complexes , 2019, ArXiv.

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  Oliver Knill,et al.  Classical mathematical structures within topological graph theory , 2014, ArXiv.

[23]  O. Knill On a theorem of Grove and Searle. , 2020, 2006.11973.

[24]  Oliver Knill,et al.  Curvature from Graph Colorings , 2014, ArXiv.

[25]  Oliver Knill,et al.  Dehn-Sommerville from Gauss-Bonnet , 2019, ArXiv.

[26]  Oliver Knill,et al.  Eulerian edge refinements, geodesics, billiards and sphere coloring , 2018, ArXiv.

[27]  O. Knill Integral geometric Hopf conjectures , 2020, 2001.01398.

[28]  R. Forman Combinatorial Differential Topology and Geometry , 1999 .

[29]  O. Knill The amazing world of simplicial complexes , 2018, 1804.08211.

[30]  Positively curved manifolds with maximal symmetry-rank , 1994, 1208.1206.

[31]  Oliver Knill,et al.  On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.

[32]  S. Fisk Geometric coloring theory , 1977 .

[33]  Oliver Knill,et al.  Green functions of Energized complexes , 2020, ArXiv.

[34]  O. Knill Positive curvature and bosons , 2020, 2006.15773.

[35]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[36]  O. Knill On Primes, Graphs and Cohomology , 2016, 1608.06877.

[37]  H. Bigalke Heinrich Heesch : Kristallgeometrie, Parkettierungen, Vierfarbenforschung , 1988 .

[38]  Oliver Knill More on Poincare-Hopf and Gauss-Bonnet , 2019, ArXiv.

[39]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[40]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[41]  Alexander V. Evako Dimension on discrete spaces , 1994 .

[42]  O. Knill Division algebra valued energized simplicial complexes , 2020, 2008.10176.

[43]  Oliver Knill One can hear the Euler characteristic of a simplicial complex , 2017, ArXiv.

[44]  Norman Levitt,et al.  The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes , 1992, Discret. Comput. Geom..

[45]  O. Knill On index expectation curvature for manifolds. , 2020, 2001.06925.

[46]  Oliver Knill,et al.  The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.

[47]  Oliver Knill,et al.  A notion of graph homeomorphism , 2014, ArXiv.

[48]  Alexander V. Ivashchenko Graphs of spheres and tori , 1994, Discret. Math..

[49]  Oliver Knill,et al.  A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.

[50]  Oliver Knill,et al.  On the arithmetic of graphs , 2017, ArXiv.

[51]  Oliver Knill,et al.  Universality for Barycentric subdivision , 2015, ArXiv.

[52]  Oliver Knill The hydrogen identity for Laplacians , 2018, ArXiv.

[53]  Oliver Knill,et al.  The zeta function for circular graphs , 2013, ArXiv.

[54]  Oliver Knill,et al.  A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.

[55]  Oliver Knill,et al.  The average simplex cardinality of a finite abstract simplicial complex , 2019, ArXiv.

[56]  Oliver Knill,et al.  The graph spectrum of barycentric refinements , 2015, ArXiv.

[57]  Oliver Knill,et al.  A Reeb sphere theorem in graph theory , 2019, ArXiv.

[58]  B. Grünbaum Are Your Polyhedra the Same as My Polyhedra , 2003 .

[59]  Oliver Knill,et al.  On Fredholm determinants in topology , 2016, ArXiv.

[60]  Oliver Knill,et al.  An Elementary Dyadic Riemann Hypothesis , 2018, ArXiv.

[61]  Oliver Knill,et al.  Poincare Hopf for vector fields on graphs , 2019, ArXiv.

[62]  O. Knill An index formula for simple graphs , 2012, ArXiv.

[63]  Oliver Knill Constant index expectation curvature for graphs or Riemannian manifolds , 2019, ArXiv.

[64]  A. Bjorner A cell complex in number theory , 2011, 1101.5704.

[65]  Oliver Knill,et al.  The energy of a simplicial complex , 2019, Linear Algebra and its Applications.

[66]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[67]  Oliver Knill,et al.  Cauchy-Binet for Pseudo-Determinants , 2013, 1306.0062.

[68]  An integrable evolution equation in geometry , 2013, 1306.0060.

[69]  Oliver Knill,et al.  Gauss-Bonnet for multi-linear valuations , 2016, ArXiv.

[70]  Oliver Knill,et al.  The strong ring of simplicial complexes , 2017, ArXiv.

[71]  Oliver Knill,et al.  The McKean-Singer Formula in Graph Theory , 2013, ArXiv.

[72]  Oliver Knill,et al.  A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.

[73]  P. McMullen INTRODUCTION TO GEOMETRIC PROBABILITY , 1999 .

[74]  R. Forman A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .

[75]  Oliver Knill,et al.  On index expectation and curvature for networks , 2012, ArXiv.

[76]  Oliver Knill,et al.  Combinatorial manifolds are Hamiltonian , 2018, ArXiv.