暂无分享,去创建一个
[1] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[2] Oliver Knill,et al. Coloring graphs using topology , 2014, ArXiv.
[3] Isospectral deformations of the Dirac operator , 2013, 1306.5597.
[4] Oliver Knill,et al. Graphs with Eulerian unit spheres , 2015, ArXiv.
[5] Oliver Knill. On Atiyah-Singer and Atiyah-Bott for finite abstract simplicial complexes , 2017, ArXiv.
[6] Oliver Knill. A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.
[7] Oliver Knill. A simple sphere theorem for graphs , 2019, ArXiv.
[8] Oliver Knill,et al. Complexes, Graphs, Homotopy, Products and Shannon Capacity , 2020, ArXiv.
[9] Oliver Knill,et al. Counting rooted forests in a network , 2013, ArXiv.
[10] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[11] D. Gale. The Game of Hex and the Brouwer Fixed-Point Theorem , 1979 .
[12] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[13] O. Knill. The counting matrix of a simplicial complex , 2019, 1907.09092.
[14] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[15] Oliver Knill,et al. The Cohomology for Wu Characteristics , 2018, ArXiv.
[16] Steve Fisk. Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .
[17] Klaudia Frankfurter,et al. Graph Theory 1736 1936 , 2016 .
[18] Angelika Mueller,et al. Transformation Groups In Differential Geometry , 2016 .
[19] Oliver Knill,et al. The Dirac operator of a graph , 2013, ArXiv.
[20] Oliver Knill,et al. Energized simplicial complexes , 2019, ArXiv.
[21] G. Ziegler. Lectures on Polytopes , 1994 .
[22] Oliver Knill,et al. Classical mathematical structures within topological graph theory , 2014, ArXiv.
[23] O. Knill. On a theorem of Grove and Searle. , 2020, 2006.11973.
[24] Oliver Knill,et al. Curvature from Graph Colorings , 2014, ArXiv.
[25] Oliver Knill,et al. Dehn-Sommerville from Gauss-Bonnet , 2019, ArXiv.
[26] Oliver Knill,et al. Eulerian edge refinements, geodesics, billiards and sphere coloring , 2018, ArXiv.
[27] O. Knill. Integral geometric Hopf conjectures , 2020, 2001.01398.
[28] R. Forman. Combinatorial Differential Topology and Geometry , 1999 .
[29] O. Knill. The amazing world of simplicial complexes , 2018, 1804.08211.
[30] Positively curved manifolds with maximal symmetry-rank , 1994, 1208.1206.
[31] Oliver Knill,et al. On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.
[32] S. Fisk. Geometric coloring theory , 1977 .
[33] Oliver Knill,et al. Green functions of Energized complexes , 2020, ArXiv.
[34] O. Knill. Positive curvature and bosons , 2020, 2006.15773.
[35] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[36] O. Knill. On Primes, Graphs and Cohomology , 2016, 1608.06877.
[37] H. Bigalke. Heinrich Heesch : Kristallgeometrie, Parkettierungen, Vierfarbenforschung , 1988 .
[38] Oliver Knill. More on Poincare-Hopf and Gauss-Bonnet , 2019, ArXiv.
[39] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[40] Claude E. Shannon,et al. The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.
[41] Alexander V. Evako. Dimension on discrete spaces , 1994 .
[42] O. Knill. Division algebra valued energized simplicial complexes , 2020, 2008.10176.
[43] Oliver Knill. One can hear the Euler characteristic of a simplicial complex , 2017, ArXiv.
[44] Norman Levitt,et al. The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes , 1992, Discret. Comput. Geom..
[45] O. Knill. On index expectation curvature for manifolds. , 2020, 2001.06925.
[46] Oliver Knill,et al. The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.
[47] Oliver Knill,et al. A notion of graph homeomorphism , 2014, ArXiv.
[48] Alexander V. Ivashchenko. Graphs of spheres and tori , 1994, Discret. Math..
[49] Oliver Knill,et al. A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.
[50] Oliver Knill,et al. On the arithmetic of graphs , 2017, ArXiv.
[51] Oliver Knill,et al. Universality for Barycentric subdivision , 2015, ArXiv.
[52] Oliver Knill. The hydrogen identity for Laplacians , 2018, ArXiv.
[53] Oliver Knill,et al. The zeta function for circular graphs , 2013, ArXiv.
[54] Oliver Knill,et al. A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.
[55] Oliver Knill,et al. The average simplex cardinality of a finite abstract simplicial complex , 2019, ArXiv.
[56] Oliver Knill,et al. The graph spectrum of barycentric refinements , 2015, ArXiv.
[57] Oliver Knill,et al. A Reeb sphere theorem in graph theory , 2019, ArXiv.
[58] B. Grünbaum. Are Your Polyhedra the Same as My Polyhedra , 2003 .
[59] Oliver Knill,et al. On Fredholm determinants in topology , 2016, ArXiv.
[60] Oliver Knill,et al. An Elementary Dyadic Riemann Hypothesis , 2018, ArXiv.
[61] Oliver Knill,et al. Poincare Hopf for vector fields on graphs , 2019, ArXiv.
[62] O. Knill. An index formula for simple graphs , 2012, ArXiv.
[63] Oliver Knill. Constant index expectation curvature for graphs or Riemannian manifolds , 2019, ArXiv.
[64] A. Bjorner. A cell complex in number theory , 2011, 1101.5704.
[65] Oliver Knill,et al. The energy of a simplicial complex , 2019, Linear Algebra and its Applications.
[66] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[67] Oliver Knill,et al. Cauchy-Binet for Pseudo-Determinants , 2013, 1306.0062.
[68] An integrable evolution equation in geometry , 2013, 1306.0060.
[69] Oliver Knill,et al. Gauss-Bonnet for multi-linear valuations , 2016, ArXiv.
[70] Oliver Knill,et al. The strong ring of simplicial complexes , 2017, ArXiv.
[71] Oliver Knill,et al. The McKean-Singer Formula in Graph Theory , 2013, ArXiv.
[72] Oliver Knill,et al. A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.
[73] P. McMullen. INTRODUCTION TO GEOMETRIC PROBABILITY , 1999 .
[74] R. Forman. A USER'S GUIDE TO DISCRETE MORSE THEORY , 2002 .
[75] Oliver Knill,et al. On index expectation and curvature for networks , 2012, ArXiv.
[76] Oliver Knill,et al. Combinatorial manifolds are Hamiltonian , 2018, ArXiv.