Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors.

Low-doped silicon multi-nanowire field effect transistors with high ON/OFF ratio over 10(7) and a low subthreshold swing of 60-120 mV dec(-1) are fabricated using lithographic semiconductor processes. The use of multi-nanowires instead of a single nanowire as sensing elements has shown improved device uniformity and stability in buffer solutions. The device stability is further improved with surface silanization and biasing with a solution gate rather than a backgate. pH sensing with a linear response over a range of 2-9 is achieved using these devices. Selective detection of bovine serum albumin at concentrations as low as 0.1 femtomolar is demonstrated.

[1]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[2]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[3]  François Léonard,et al.  Large area, dense silicon nanowire array chemical sensors , 2006 .

[4]  Mukti Aryal,et al.  Stability of HSQ nanolines defined by e-beam lithography for Si nanowire field effect transistors , 2008 .

[5]  Chan Woo Park,et al.  Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors , 2007 .

[6]  M. J. Rost,et al.  Pushing the limits of SPM , 2005 .

[7]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[8]  Patricia M. Dove,et al.  Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions , 2005 .

[9]  Oliver Seitz,et al.  Infrared characterization of interfacial Si-O bond formation on silanized flat SiO2/Si surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[10]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[11]  R. Cobbold,et al.  Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects , 1979, IEEE Transactions on Electron Devices.

[12]  Xiaolin Zheng,et al.  Probing flow velocity with silicon nanowire sensors. , 2009, Nano letters.

[13]  J. D. Winefordner,et al.  Limit of detection. A closer look at the IUPAC definition , 1983 .

[14]  A. Toriumi,et al.  Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET's , 1994 .

[15]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[16]  Walter Hu,et al.  Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors. , 2011, Nano letters.

[17]  W. Ko,et al.  A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor , 1986, IEEE Transactions on Electron Devices.

[18]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[19]  Andrew R. Brown,et al.  Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs , 2003 .

[20]  Xuema Li,et al.  Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires , 2004 .

[21]  Robert J. Messinger,et al.  Making it stick: convection, reaction and diffusion in surface-based biosensors , 2008, Nature Biotechnology.

[22]  M. Reed,et al.  Semiconducting Nanowire Field-Effect Transistor Biomolecular Sensors , 2008, IEEE Transactions on Electron Devices.

[23]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[24]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[25]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[26]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[27]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[28]  A. Golub,et al.  γ-APTES Modified Silica Gels: The Structure of the Surface Layer , 1996 .

[29]  Oguz H. Elibol,et al.  Integrated nanoscale silicon sensors using top-down fabrication , 2003 .

[30]  Paul A. Kohl,et al.  The Electrochemical Oxidation of Silicon and Formation of Porous Silicon in Acetonitrile , 1994 .

[31]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[32]  Shyamsunder Erramilli,et al.  Silicon-based nanoelectronic field-effect pH sensor with local gate control , 2006 .

[33]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[34]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[35]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[36]  Charles M. Lieber,et al.  Subthreshold regime has the optimal sensitivity for nanowire FET biosensors. , 2010, Nano letters.

[37]  A. van den Berg,et al.  All-(111) surface silicon nanowires: selective functionalization for biosensing applications. , 2010, ACS applied materials & interfaces.

[38]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[39]  D. MacDougall,et al.  Guidelines for data acquisition and data quality evaluation in environmental chemistry , 1980 .