On the asymptotic exactness of Bank-Weiser's estimator

SummaryIn this paper we analyze an error estimator introduced by Bank and Weiser. We prove that this estimator is asymptotically exact in the energy norm for regular solutions and parallel meshes. By considering a simple example we show that this is not true for general meshes.

[1]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[2]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[3]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[4]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[5]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[6]  Ivo Babuška,et al.  Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .

[7]  I. Babuska,et al.  A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator , 1987 .

[8]  Pekka Neittaanmäki,et al.  On superconvergence techniques , 1987 .

[9]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[10]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[11]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes equations: a comparison , 1990 .

[12]  Ivo Babuška,et al.  The problem of the selection of an a posteriori error indicator based on smoothening techniques , 1993 .

[14]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .