A controlled-NOT gate for frequency-bin qubits

The realization of strong photon–photon interactions has presented an enduring challenge across photonics, particularly in quantum computing, where two-photon gates form essential components for scalable quantum information processing (QIP). While linear-optic schemes have enabled probabilistic entangling gates in spatio-polarization encoding, solutions for many other useful degrees of freedom remain missing. In particular, no two-photon gate for the important platform of frequency encoding has been experimentally demonstrated, due in large part to the additional challenges imparted by the mismatched wavelengths of the interacting photons. In this article, we design and implement an entangling gate for frequency-bin qubits, a coincidence-basis controlled-NOT (CNOT), using line-by-line pulse shaping and electro-optic modulation. We extract a quantum unitary fidelity of 0.91 ± 0.01 via a parameter inference approach based on Bayesian machine learning, which enables accurate gate reconstruction from measurements in the two-photon computational basis alone. Our CNOT imparts a single-photon frequency shift controlled by the frequency of another photon—an important capability in itself—and should enable new directions in fiber-compatible QIP.

[1]  R. L. Kosut,et al.  Simplified quantum process tomography , 2009, 0910.4609.

[2]  Minghao Qi,et al.  Persistent energy-time entanglement covering multiple resonances of an on-chip biphoton frequency comb , 2016, 1611.03774.

[3]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[4]  Christine Silberhorn,et al.  Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings , 2018, 1803.04316.

[5]  Nicholas A. Peters,et al.  Quantum interference and correlation control of frequency-bin qubits , 2018 .

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[8]  J. Franson,et al.  Demonstration of nondeterministic quantum logic operations using linear optical elements. , 2001, Physical review letters.

[9]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[10]  Sven Ramelow,et al.  Ramsey Interference with Single Photons. , 2016, Physical review letters.

[11]  Zach DeVito,et al.  Opt , 2017 .

[12]  S. Chu,et al.  Generation of multiphoton entangled quantum states by means of integrated frequency combs , 2016, Science.

[13]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[14]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[15]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[16]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[17]  M. Raymer,et al.  High-selectivity quantum pulse gating of photonic temporal modes using all-optical Ramsey interferometry , 2018 .

[18]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[19]  Masato Koashi,et al.  Frequency-domain Hong–Ou–Mandel interference , 2016, Nature Photonics.

[20]  G. Vallone,et al.  Integrated photonic quantum gates for polarization qubits , 2011, Nature communications.

[21]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[22]  Kyunghun Han,et al.  50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator. , 2018, Optics express.

[23]  M. Lauermann,et al.  Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator , 2017, Optica.

[24]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[25]  Peter C Humphreys,et al.  Linear optical quantum computing in a single spatial mode. , 2013, Physical review letters.

[26]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[27]  Dirk Englund,et al.  Quantum logic using correlated one-dimensional quantum walks , 2018 .

[28]  Philip Walther,et al.  Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits , 2017, 1708.06778.

[29]  Joseph M. Lukens,et al.  Frequency-encoded photonic qubits for scalable quantum information processing , 2016, 1612.03131.

[30]  Andrew G. White,et al.  Direct characterization of linear-optical networks. , 2012, Optics express.

[31]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[32]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[33]  Carl Eckart,et al.  Accidental Coincidences in Counter Circuits , 1938 .

[34]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[35]  Radford M. Neal Slice Sampling , 2003, The Annals of Statistics.

[36]  Pavel Lougovski,et al.  Quantum state estimation when qubits are lost: a no-data-left-behind approach , 2016, 1610.03714.

[37]  Shigeki Takeuchi,et al.  Quantum phase gate for photonic qubits using only beam splitters and postselection , 2001, quant-ph/0111092.

[38]  A. Zeilinger,et al.  High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments. , 2017, Physical review letters.

[39]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[40]  Brett J. Pearson,et al.  A hands-on introduction to single photons and quantum mechanics for undergraduates , 2010 .

[41]  Nicholas A. Peters,et al.  Controllable two-photon interference with versatile quantum frequency processor , 2018, 1803.10712.

[42]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[43]  Pavel Lougovski,et al.  Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing. , 2017, Physical review letters.

[44]  L. Goddard Information Theory , 1962, Nature.

[45]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[46]  Ericka Stricklin-Parker,et al.  Ann , 2005 .