Path optimization with limited sensing ability

We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducing its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.

[1]  A.L. Bertozzi,et al.  Robotic Path Planning and Visibility with Limited Sensor Data , 2007, 2007 American Control Conference.

[2]  Andrew V. Goldberg,et al.  Shortest paths algorithms: Theory and experimental evaluation , 1994, SODA '94.

[3]  Masafumi Yamashita,et al.  Distributed memoryless point convergence algorithm for mobile robots with limited visibility , 1999, IEEE Trans. Robotics Autom..

[4]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[5]  Li-Tien Cheng,et al.  Visibility Optimization Using Variational Approaches , 2005 .

[6]  Stan Sclaroff,et al.  Optimal Placement of Cameras in Floorplans to Satisfy Task Requirements and Cost Constraints , 2004 .

[7]  Donald B. Johnson,et al.  Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.

[8]  J. P. Secrétan,et al.  Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .

[9]  Simeon C. Ntafos,et al.  Optimum Watchman Routes , 1988, Inf. Process. Lett..

[10]  Subhash Suri,et al.  Efficient computation of Euclidean shortest paths in the plane , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[11]  Gábor Fejes Tóth,et al.  Packing and Covering , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[12]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[13]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[14]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[15]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[16]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[17]  T. Shermer Recent Results in Art Galleries , 1992 .

[18]  S. Chow,et al.  Finding the shortest path by evolving junctions on obstacle boundaries (E-JOB): An initial value ODEʼs approach , 2013 .

[19]  Antonis A. Argyros,et al.  Fast positioning of limited-visibility guards for the inspection of 2D workspaces , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[21]  Raghu Machiraju,et al.  Coverage optimization to support security monitoring , 2007, Comput. Environ. Urban Syst..

[22]  Jorge Urrutia,et al.  Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.

[23]  A. Aggarwal The art gallery theorem : Its variations, and algorithmic aspects , 1984 .

[24]  S. Osher,et al.  Visibility and its dynamics in a PDE based implicit framework , 2004 .

[25]  Steven M. LaValle,et al.  Distance-Optimal Navigation in an Unknown Environment Without Sensing Distances , 2007, IEEE Transactions on Robotics.

[26]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[27]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[28]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[29]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[30]  Giovanni Rinaldi,et al.  A Branch-and-Cut Algorithm for the Resolution of Large-Scale Symmetric Traveling Salesman Problems , 1991, SIAM Rev..

[31]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[32]  Shui-Nee Chow,et al.  Global Optimizations by Intermittent Diffusion , 2013 .

[33]  Li-Tien Cheng,et al.  Visibility of Point Clouds and Mapping of Unknown Environments , 2006, ACIVS.

[34]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[35]  Yanina Landa,et al.  Visibility of point clouds and exploratory path planning in unknown environments , 2008 .

[36]  P. Varshney,et al.  Multisensor surveillance systems : the fusion perspective , 2003 .

[37]  Ioannis Pavlidis,et al.  Urban surveillance systems: from the laboratory to the commercial world , 2001, Proc. IEEE.

[38]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[39]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[40]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[41]  Benjamin Kuipers,et al.  A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations , 1991, Robotics Auton. Syst..

[42]  Simeon Ntafos,et al.  Watchman routes under limited visibility , 1992 .

[43]  Joseph S. B. Mitchell,et al.  Shortest Paths and Networks , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[44]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[45]  J. O'Rourke Art gallery theorems and algorithms , 1987 .