Second-order sliding-mode controller design and tuning for grid synchronisation and power control of a wind turbine-driven doubly fed induction generator

This study presents a second-order sliding-mode control (2-SMC) scheme for a wind turbine-driven doubly fed induction generator (DFIG). The tasks of grid synchronisation and power control are undertaken by two different algorithms, designed to command the rotor-side converter at a fixed switching frequency. Effective tuning equations for the parameters of both controllers are derived. A procedure is also provided that guarantees bumpless transfer between the two controllers at the instant of connecting the DFIG to the grid. The resulting 2-SMC scheme is experimentally validated on a laboratory-scale 7 kW DFIG test bench. Experimental results evidence both the high dynamic performance and the superior robustness achieved with the proposed control scheme.

[1]  David J. Atkinson,et al.  Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder , 2000 .

[2]  M.E.H. Benbouzid,et al.  High-order sliding mode control of DFIG-based marine current turbine , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[3]  Mohamed El Hachemi Benbouzid,et al.  High-Order Sliding-Mode Control of Variable-Speed Wind Turbines , 2009, IEEE Transactions on Industrial Electronics.

[4]  Peter Vas,et al.  Sensorless vector and direct torque control , 1998 .

[5]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[6]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[7]  Barry W. Williams,et al.  Sensorless second-order sliding-mode speed control of a voltage-fed induction-motor drive using nonlinear state feedback , 2005 .

[8]  Lie Xu,et al.  Direct active and reactive power control of DFIG for wind energy generation , 2006, IEEE Transactions on Energy Conversion.

[9]  Frede Blaabjerg,et al.  Overview of Control and Grid Synchronization for Distributed Power Generation Systems , 2006, IEEE Transactions on Industrial Electronics.

[10]  J. X. Ostolaza,et al.  Sliding-mode control of doubly-fed generator for optimum power curve tracking , 2010 .

[11]  Liuchen Chang,et al.  An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems , 2004 .

[12]  G. Tapia,et al.  Wind generation optimisation algorithm for a doubly fed induction generator , 2005 .

[13]  Manel Jebali-Ben Ghorbal,et al.  Direct Virtual Torque Control for Doubly Fed Induction Generator Grid Connection , 2009, IEEE Transactions on Industrial Electronics.

[14]  G. Tapia,et al.  Methodology for Smooth Connection of Doubly Fed Induction Generators to the Grid , 2009, IEEE Transactions on Energy Conversion.

[15]  Jon Clare,et al.  Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation , 1996 .

[16]  S. Peresada,et al.  Power control of a doubly fed induction machine via output feedback , 2004 .

[17]  Walmir Freitas,et al.  Three-phase doubly fed induction generators: an overview , 2010 .

[18]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[19]  Heng Nian,et al.  Direct Active and Reactive Power Regulation of DFIG Using Sliding-Mode Control Approach , 2010, IEEE Transactions on Energy Conversion.

[20]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[21]  Jong-Lick Lin A new approach of dead-time compensation for PWM voltage inverters , 2002 .

[22]  I. Zubia,et al.  In situ electrical parameter identification method for induction wind generators , 2011 .

[23]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[24]  Roberto Cárdenas,et al.  Sensorless Control of Doubly-Fed Induction Generators Using a Rotor-Current-Based MRAS Observer , 2008, IEEE Transactions on Industrial Electronics.

[25]  Lie Xu,et al.  Direct Power Control of DFIG With Constant Switching Frequency and Improved Transient Performance , 2007, IEEE Transactions on Energy Conversion.

[26]  G. Tapia,et al.  Modeling and control of a wind turbine driven doubly fed induction generator , 2003 .