NeMeSys: a biological resource for narrowing the gap between sequence and function in the human pathogen Neisseria meningitidis

BackgroundGenome sequences, now available for most pathogens, hold promise for the rational design of new therapies. However, biological resources for genome-scale identification of gene function (notably genes involved in pathogenesis) and/or genes essential for cell viability, which are necessary to achieve this goal, are often sorely lacking. This holds true for Neisseria meningitidis, one of the most feared human bacterial pathogens that causes meningitis and septicemia.ResultsBy determining and manually annotating the complete genome sequence of a serogroup C clinical isolate of N. meningitidis (strain 8013) and assembling a library of defined mutants in up to 60% of its non-essential genes, we have created NeMeSys, a biological resource for Neisseria meningitidis systematic functional analysis. To further enhance the versatility of this toolbox, we have manually (re)annotated eight publicly available Neisseria genome sequences and stored all these data in a publicly accessible online database. The potential of NeMeSys for narrowing the gap between sequence and function is illustrated in several ways, notably by performing a functional genomics analysis of the biogenesis of type IV pili, one of the most widespread virulence factors in bacteria, and by identifying through comparative genomics a complete biochemical pathway (for sulfur metabolism) that may potentially be important for nasopharyngeal colonization.ConclusionsBy improving our capacity to understand gene function in an important human pathogen, NeMeSys is expected to contribute to the ongoing efforts aimed at understanding a prokaryotic cell comprehensively and eventually to the design of new therapies.

[1]  M. So,et al.  Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae , 1985, Nature.

[2]  T. Meyer,et al.  The repertoire of silent pilus genes in neisseria gonorrhoeae: Evidence for gene conversion , 1986, Cell.

[3]  J. Mekalanos,et al.  A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR , 1988, Journal of bacteriology.

[4]  J. Mattick,et al.  Organization of the fimbrial gene region of Bacteroides nodosus: class I and class II strains , 1991, Molecular microbiology.

[5]  X. Nassif,et al.  Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells , 1993, Molecular microbiology.

[6]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[7]  B. Roe,et al.  Molecular characterization of hpuAB, the haemoglobin–haptoglobin‐utilization operon of Neisseria meningitidis , 1997, Molecular microbiology.

[8]  Erik L. L. Sonnhammer,et al.  A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences , 1998, ISMB.

[9]  H. Seifert,et al.  The pathogenic neisseriae contain an inactive rpoN gene and do not utilize the pilE sigma54 promoter. , 1998, Gene.

[10]  A. Abola,et al.  Reduction of Adenosine-5′-Phosphosulfate Instead of 3′-Phosphoadenosine-5′-Phosphosulfate in Cysteine Biosynthesis by Rhizobium meliloti and Other Members of the Family Rhizobiaceae , 1999, Journal of bacteriology.

[11]  X. Nassif,et al.  Mutagenesis of Neisseria meningitidis by In Vitro Transposition of Himar1 mariner , 2000, Journal of bacteriology.

[12]  B. Barrell,et al.  Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491 , 2000, Nature.

[13]  S. Salzberg,et al.  Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. , 2000, Science.

[14]  H. Tettelin,et al.  Mu-Like Prophage in Serogroup B Neisseria meningitidis Coding for Surface-Exposed Antigens , 2001, Infection and Immunity.

[15]  J. Rood,et al.  The Type IV Fimbrial Subunit Gene (fimA) ofDichelobacter nodosus Is Essential for Virulence, Protease Secretion, and Natural Competence , 2001, Journal of bacteriology.

[16]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[17]  Grégory Nuel,et al.  AMIGene: Annotation of MIcrobial Genes , 2003, Nucleic Acids Res..

[18]  S. Ehrlich,et al.  Essential Bacillus subtilis genes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  N. Mouchel,et al.  Experimentally revised repertoire of putative contingency loci in Neisseria meningitidis strain MC58: evidence for a novel mechanism of phase variation , 2003, Molecular microbiology.

[20]  Eric Haugen,et al.  Comprehensive transposon mutant library of Pseudomonas aeruginosa , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  X. Nassif,et al.  Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. , 2003, Genome research.

[22]  C. Hart,et al.  Meningococcal Disease , 1974, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[23]  A. Goffeau,et al.  The uses of genome-wide yeast mutant collections , 2004, Genome Biology.

[24]  E. Glass,et al.  Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Marchal,et al.  Peptide signal molecules and bacteriocins in Gram-negative bacteria: a genome-wide in silico screening for peptides containing a double-glycine leader sequence and their cognate transporters , 2004, Peptides.

[26]  S. Cebrat,et al.  Where does bacterial replication start? Rules for predicting the oriC region. , 2004, Nucleic acids research.

[27]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[28]  David S. Wishart,et al.  Circular genome visualization and exploration using CGView , 2005, Bioinform..

[29]  K. Jolley,et al.  A chromosomally integrated bacteriophage in invasive meningococci , 2005, The Journal of experimental medicine.

[30]  X. Nassif,et al.  Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function , 2004, Molecular microbiology.

[31]  X. Nassif,et al.  PilX, a pilus‐associated protein essential for bacterial aggregation, is a key to pilus‐facilitated attachment of Neisseria meningitidis to human cells , 2004, Molecular microbiology.

[32]  A. Witney,et al.  Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. , 2005, Microbiology.

[33]  C. Hutchison,et al.  Essential genes of a minimal bacterium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[35]  Sulfate Metabolism in Mycobacteria , 2006, Chembiochem : a European journal of chemical biology.

[36]  H. Tettelin,et al.  Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. , 2006, Microbiology.

[37]  C. Médigue,et al.  MaGe: a microbial genome annotation system supported by synteny results , 2006, Nucleic acids research.

[38]  Outbreak news. Meningococcal disease, African meningitis belt, epidemic season 2006. , 2006, Releve epidemiologique hebdomadaire.

[39]  Etienne Carbonnelle,et al.  A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili , 2006, Molecular microbiology.

[40]  N. Saunders,et al.  The majority of genes in the pathogenic Neisseria species are present in non-pathogenic Neisseria lactamica, including those designated as 'virulence genes' , 2006, BMC Genomics.

[41]  M. Inui,et al.  High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum and Construction of a Single-Gene Disruptant Mutant Library , 2006, Applied and Environmental Microbiology.

[42]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[43]  Lori A. S. Snyder,et al.  The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria. , 2007, Molecular biology and evolution.

[44]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[45]  D. Pompliano,et al.  Drugs for bad bugs: confronting the challenges of antibacterial discovery , 2007, Nature Reviews Drug Discovery.

[46]  B. Barrell,et al.  Meningococcal Genetic Variation Mechanisms Viewed through Comparative Analysis of Serogroup C Strain FAM18 , 2006, PLoS genetics.

[47]  R. Kaul,et al.  A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate , 2007, Proceedings of the National Academy of Sciences.

[48]  Sang Jun Kim,et al.  Complete Genome Sequence of Neisseria gonorrhoeae NCCP11945 , 2008, Journal of bacteriology.

[49]  Vincent Schächter,et al.  A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1 , 2008, Molecular systems biology.

[50]  David R. Riley,et al.  Comparative genomics: the bacterial pan-genome. , 2008, Current opinion in microbiology.

[51]  A. Goesmann,et al.  Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis , 2008, Proceedings of the National Academy of Sciences.

[52]  Q. Jin,et al.  Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. , 2008, Genomics.

[53]  Vladimir Pelicic Type IV pili: e pluribus unum? , 2008, Molecular microbiology.

[54]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[55]  Yan Lin,et al.  DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes , 2008, Nucleic Acids Res..

[56]  H. Tettelin,et al.  Genome flexibility in Neisseria meningitidis , 2009, Vaccine.

[57]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..