Controlling Dual Molecular Pumps Electrochemically.

Artificial molecular machines can be operated using either physical or chemical inputs. Light-powered motors display clean and autonomous operations, whereas chemically driven machines generate waste products and are intermittent in their motions. Herein, we show that controlled changes in applied electrochemical potentials can drive the operation of artificial molecular pumps in a semi-autonomous manner-that is, without the need for consecutive additions of chemical fuel(s). The electroanalytical approach described in this Communication promotes the assembly of cyclobis(paraquat-p-phenylene) rings along a positively charged oligomeric chain, providing easy access to the formation of multiple mechanical bonds by means of a controlled supply of electricity.

[1]  M. Baroncini,et al.  Making and Operating Molecular Machines: A Multidisciplinary Challenge , 2018, ChemistryOpen.

[2]  Daniel J. Tetlow,et al.  Rotary and linear molecular motors driven by pulses of a chemical fuel , 2017, Science.

[3]  J. F. Stoddart,et al.  Mastering the non-equilibrium assembly and operation of molecular machines. , 2017, Chemical Society reviews.

[4]  B. Feringa The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). , 2017, Angewandte Chemie.

[5]  Michael T. Otley,et al.  An efficient artificial molecular pump , 2017 .

[6]  J. F. Stoddart,et al.  Mechanisch verzahnte Moleküle (MIMs) – molekulare Shuttle, Schalter und Maschinen (Nobel‐Aufsatz) , 2017 .

[7]  J. Fraser Stoddart,et al.  Mechanically Interlocked Molecules (MIMs)-Molecular Shuttles, Switches, and Machines (Nobel Lecture). , 2017, Angewandte Chemie.

[8]  Ben L. Feringa Die Kunst, klein zu bauen: von molekularen Schaltern bis zu Motoren (Nobel‐Aufsatz) , 2017 .

[9]  Jos C. M. Kistemaker,et al.  Third-Generation Light-Driven Symmetric Molecular Motors , 2017, Journal of the American Chemical Society.

[10]  David A Leigh,et al.  Artificial molecular motors. , 2017, Chemical Society reviews.

[11]  J. F. Stoddart,et al.  Size-Matched Radical Multivalency. , 2017, Journal of the American Chemical Society.

[12]  R. Astumian Optical vs. chemical driving for molecular machines. , 2016, Faraday discussions.

[13]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[14]  J. C. Barnes,et al.  Influence of Constitution and Charge on Radical Pairing Interactions in Tris-radical Tricationic Complexes. , 2016, Journal of the American Chemical Society.

[15]  D. Leigh,et al.  An autonomous chemically fuelled small-molecule motor , 2016, Nature.

[16]  J. F. Stoddart,et al.  Oligorotaxane Radicals under Orders , 2016, ACS central science.

[17]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[18]  J. F. Stoddart,et al.  Design and Synthesis of Nonequilibrium Systems. , 2015, ACS nano.

[19]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[20]  R. Astumian,et al.  Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. , 2015, Biophysical journal.

[21]  J. F. Stoddart,et al.  Folding of oligoviologens induced by radical-radical interactions. , 2015, Journal of the American Chemical Society.

[22]  I. Aprahamian,et al.  Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. , 2014, Journal of the American Chemical Society.

[23]  C. Bruns,et al.  Rotaxane-based molecular muscles. , 2014, Accounts of chemical research.

[24]  Ryan M. Young,et al.  Relative unidirectional translation in an artificial molecular assembly fueled by light. , 2013, Journal of the American Chemical Society.

[25]  R. Astumian Microscopic reversibility as the organizing principle of molecular machines. , 2012, Nature nanotechnology.

[26]  J. F. Stoddart,et al.  Great expectations: can artificial molecular machines deliver on their promise? , 2012, Chemical Society reviews.

[27]  R. Astumian Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.

[28]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[29]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[30]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 1999, Nature.

[31]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[32]  Douglas C. Friedman,et al.  Radically enhanced molecular recognition. , 2010, Nature chemistry.

[33]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[34]  M. Heyrovský The electroreduction of methyl viologen , 1987 .