Device-Free Mobile Target Tracking Using Passive Tags

We propose a low-cost device-free mobile target tracking system using passive tags, namely, DTrack, to detect and track a human object in a certain surveillance area. The idea is that when a human object moves, he may block or reflect the RF signals between the reader and tags. Based on the estimation of Doppler Shift and Tag Read Rate variations, DTrack can detect whether a human object enters in the system and further track the moving direction of the object. DTrack uses commercial readers and off-the-shelf passive tags and is scalable and easy for large-scale deployments. Experimental results show that our system is effective in detecting the direction of moving human objects with high accuracy.

[1]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[2]  Mo Li,et al.  PET: Probabilistic Estimating Tree for Large-Scale RFID Estimation , 2011, IEEE Transactions on Mobile Computing.

[3]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[4]  RollCaller: User-friendly indoor navigation system using human-item spatial relation , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[5]  Minyi Guo,et al.  TASA: Tag-Free Activity Sensing Using RFID Tag Arrays , 2011, IEEE Transactions on Parallel and Distributed Systems.

[6]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[7]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[8]  Wei Xi,et al.  Human object estimation via backscattered radio frequency signal , 2015, 2015 IEEE Conference on Computer Communications (INFOCOM).

[9]  Gang Wang,et al.  I am the antenna: accurate outdoor AP location using smartphones , 2011, MobiCom '11.

[10]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[11]  Markus Cremer,et al.  New measurement results for the localization of UHF RFID transponders using an Angle of Arrival (AoA) approach , 2011, 2011 IEEE International Conference on RFID.

[12]  Yunhao Liu,et al.  VIRE: Active RFID-based Localization Using Virtual Reference Elimination , 2007, 2007 International Conference on Parallel Processing (ICPP 2007).

[13]  Swarun Kumar,et al.  Accurate indoor localization with zero start-up cost , 2014, MobiCom.

[14]  Wei Xi,et al.  CBID: A Customer Behavior Identification System Using Passive Tags , 2014, 2014 IEEE 22nd International Conference on Network Protocols.

[15]  Xiuwen Liu,et al.  Accurate localization of RFID tags using phase difference , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[16]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[17]  Fadel Adib,et al.  See through walls with WiFi! , 2013, SIGCOMM.

[18]  Shwetak N. Patel,et al.  Whole-home gesture recognition using wireless signals , 2013, MobiCom.

[19]  Pei Zhang,et al.  Spartacus: spatially-aware interaction for mobile devices through energy-efficient audio sensing , 2013, MobiSys '13.

[20]  Alex X. Liu,et al.  Every bit counts: fast and scalable RFID estimation , 2012, Mobicom '12.

[21]  Rob Miller,et al.  3D Tracking via Body Radio Reflections , 2014, NSDI.

[22]  Wei Xi,et al.  GenePrint: Generic and Accurate Physical-Layer Identification for UHF RFID Tags , 2016, IEEE/ACM Transactions on Networking.