Thermal Metamorphism in Chondrites

Thermal metamorphism has affected most chondritic meteorites to some extent, and in most ordinary chondrites, some carbonaceous chondrites, and many enstatite chondrites it has significantly modified the primary characteristics of the meteorites. Metamorphic grade, as described by the petrologic type, is one axis of the current two-dimensional system for classifying chondrites. Many changes are produced during thermal metamorphism, including textural integration and recrystallization, mineral equilibration, destruction of primary minerals, and growth of secondary minerals. Understanding these changes is critical if one hopes to infer the conditions under which chondrites originally formed. In addition to summarizing metamorphic changes, we also discuss temperatures, oxidation states, and possible heat sources for metamorphism.

[1]  M. Michel-Lévy La matrice noire et blanche de la chondrite de Tieschitz (H3) , 1976 .

[2]  J. Wood,et al.  What heated the parent meteorite planets , 1991 .

[3]  K. Keil,et al.  The CR chondrite clan: Implications for early solar system processes , 2002 .

[4]  A. Rubin Petrologic evidence for collisional heating of chondritic asteroids , 1995 .

[5]  W. R. Schmus,et al.  Composition of phosphate minerals in ordinary chondrites , 1969 .

[6]  G. Wasserburg,et al.  A petrographic, chemical, and isotopic study of calcium‐aluminum‐rich inclusions and aluminum‐rich chondrules from the Axtell (CV3) chondrite , 2000 .

[7]  R. Clayton,et al.  Acfer 217‐A new member of the Rumuruti chondrite group (R) , 1994 .

[8]  A. Rubin Correlated petrologic and geochemical characteristics of CO3 chondrites , 1998 .

[9]  S. Tachibana,et al.  The Initial Abundance of 60Fe in the Solar System , 2003 .

[10]  E. Jarosewich,et al.  MINERALOGY, PETROLOGY AND CHEMISTRY OF THE ISNA (C3) METEORITE , 1975 .

[11]  J. R. Ashworth,et al.  Thermal history of the H-group of chondritic meteorites , 1980, Nature.

[12]  A. Rubin,et al.  Carlisle Lakes and Allan Hills 85151: Members of a new chondrite grouplet , 1989 .

[13]  K. Keil,et al.  The Shaw meteorite: History of a chondrite consisting of impact-melted and metamorphic lithologies , 1979 .

[14]  W. R. van Schmus,et al.  Equilibration Temperatures of Iron and Magnesium in Chondritic Meteorites , 1967, Science.

[15]  L. Leshin,et al.  Oxygen isotope and 26Al‐26Mg systematics of aluminum‐rich chondrules from unequilibrated enstatite chondrites , 2006 .

[16]  D. J. Barber,et al.  The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications , 1987 .

[17]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[18]  G. J. Taylor,et al.  Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism , 1991 .

[19]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites. IX. Thermoluminescence and hydrothermal annealing experiments and their relationship to metamorphism and aqueous alteration in type < 3. 3 ordinary chondrites , 1988 .

[20]  Makoto Kimura,et al.  Anhydrous alteration of Allende chondrules in the solar nebura II: Alkali-Ca exchange reactions and formation of nepheline,sodalite and Ca-rich phases in chondrules , 1995 .

[21]  R. T. Dodd Meteorites. A petrologic-chemical synthesis. , 1981 .

[22]  J. Wood Chondrites - Their metallic minerals, thermal histories, and parent planets. , 1967 .

[23]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[24]  M. Lindstrom,et al.  Origin and history of impact-melt rocks of enstatite chondrite parentage , 1995 .

[25]  P. Buseck,et al.  Matrix mineralogy of the Lance CO3 carbonaceous chondrite - A transmission electron microscope study , 1990 .

[26]  J. Zähringer Rare gases in stony meteorites , 1968 .

[27]  Motoaki Sato,et al.  Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies , 1984 .

[28]  A. Rubin Postshock annealing and postannealing shock in equilibrated ordinary chondrites: implications for the thermal and shock histories of chondritic asteroids , 2004 .

[29]  E. Scott,et al.  Classification, metamorphic history, and pre-metamorphic composition of chondrules , 1994 .

[30]  D. Sears,et al.  The classification and complex thermal history of the enstatite chondrites , 1995 .

[31]  Gary R. Huss,et al.  Noble gases in presolar diamonds II: Component abundances reflect thermal processing , 1994 .

[32]  G. Huss,et al.  Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula , 2003 .

[33]  H. McSween,et al.  Oxidation during metamorphism of the ordinary chondrites , 1993 .

[34]  D. Sears,et al.  Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules , 1995 .

[35]  D. Sears,et al.  The compositional classification of chondrites: II The enstatite chondrite groups , 1982 .

[36]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[37]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites—I: Metamorphism related studies of Antarctic and other type 3 ordinary chondrites , 1982 .

[38]  D. Sears,et al.  Chemical and physical studies of chondrites: X. Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites , 1992 .

[39]  P. Hoppe,et al.  Evidence for live iron-60 in Semarkona and Chervony Kut: A NanoSIMS study , 2003 .

[40]  E. Anders,et al.  On the siting of noble gases in E-chondrites , 1982 .

[41]  G. J. Taylor,et al.  Original structures, and fragmentation and reassembly histories of asteroids - Evidence from meteorites , 1987 .

[42]  R. Clayton,et al.  CV3 Chondrites: Three Subgroups, Not Two , 1997 .

[43]  M. Zolensky,et al.  Metamorphosed CM and CI Carbonaceous Chondrites Could be from the Breakup of the Same Earth-crossing Asteroid , 2005 .

[44]  J. Delaney,et al.  Type 3 Enstatite Chondrites: a Newly Recognized Group of Unequilibrated Enstatite Chondrites (uec's) , 1984 .

[45]  J. Crabb Noble Gases in the E-Chondrites , 1981 .

[46]  J. Wasson,et al.  Composition of the metal phases in ordinary chondrites - Implications regarding classification and metamorphism , 1980 .

[47]  E. Scott,et al.  Chondrites and Their Components , 2014 .

[48]  M. Trieloff,et al.  Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry , 2003, Nature.

[49]  D. J. Barber,et al.  Origin of chondrule rims and interchondrule matrices in unequilibrated ordinary chondrites , 1989 .

[50]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites. XI - Metamorphism, pairing, and brecciation of ordinary chondrites , 1991 .

[51]  M. Christophe-Michel-Lévy La matrice noire et blanche de la chondrite de Tieschitz (H3) , 1976 .

[52]  L. Nittler Presolar stardust in meteorites : recent advances and scientific frontiers , 2003 .

[53]  D. Sears,et al.  Thermoluminescence sensitivity and thermal history of type 3 ordinary chondrites: Eleven new type 3.0–3.1 chondrites and possible explanations for differences among H, L, and LL chondrites , 2002 .

[54]  S. Tachibana,et al.  Oxygen, silicon, and Mn-Cr isotopes of fayalite in the Kaba oxidized CV3 chondrite: Constraints for its formation history , 2005 .

[55]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[56]  A. Brearley Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307: Origins and evidence for diverse, primitive nebular dust components , 1993 .

[57]  Gary R. Huss,et al.  Ubiquitous interstellar diamond and SiC in primitive chondrites: abundances reflect metamorphism , 1990, Nature.

[58]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites—IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites , 1985 .

[59]  D. Sears,et al.  Pyroxene structures, cathodoluminescence and the thermal history of the enstatite chondrites , 1996 .

[60]  John A. Wood,et al.  A chemical-petrologic classification for the chondritic meteorites. , 1967 .

[61]  P. Hoppe,et al.  Discovery of an In-Situ Presolar Silicate Grain with GEMS-Like Composition in the Bishunpur Matrix , 2004 .

[62]  A. Rubin,et al.  The compositional classification of chondrites: V. The Karoonda (CK) group of carbonaceous chondrites , 1991 .

[63]  W. R. Schmus,et al.  A survey of the unequilibrated ordinary chondrites , 1967 .

[64]  E. Olsen,et al.  Equilibration temperatures of the ordinary chondrites: A new evaluation , 1984 .

[65]  H. McSween,et al.  Thermal Evolution Models of Asteroids , 2002 .

[66]  A. Rubin,et al.  A Critical Evaluation of the Evidence for Hot Accretion , 1996 .

[67]  D. J. Barber,et al.  Primitive material surviving in chondrites - Matrix , 1988 .

[68]  M. Zolensky,et al.  Secondary calcium‐iron‐rich minerals in the Bali‐like and Allende‐like oxidized CV3 chondrites and Allende dark inclusions , 1998 .

[69]  D. Sears,et al.  Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components , 1995 .

[70]  R. Clayton,et al.  A new metal‐rich chondrite grouplet , 2001 .

[71]  A. Brearley Carbon-rich aggregates in type 3 ordinary chondrites: Characterization, origins, and thermal history , 1990 .

[72]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[73]  D. J. Barber,et al.  Lithification of gas-rich meteorites , 1976 .

[74]  ’. R.HUTCHISON The Semarkona meteorite : First recorded occurrence of smectite in an ordinary chondrite , and its implications , 2002 .

[75]  G. Wasserburg,et al.  Demonstration of Mg-26 excess in Allende and evidence for Al-26 , 1976 .

[76]  E. Scott,et al.  Shock metamorphism of enstatite chondrites , 1997 .

[77]  E. Scott,et al.  DISENTANGLING NEBULAR AND ASTEROIDAL FEATURES OF CO3 CARBONACEOUS CHONDRITE METEORITES , 1990 .

[78]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[79]  A. Brearley,et al.  The onset of metamorphism in ordinary and carbonaceous chondrites , 2005 .

[80]  A. Rubin Kamacite and olivine in ordinary chondrites: Intergroup and intragroup relationships , 1990 .

[81]  S. Reed Perryite in the Kota-Kota and South Oman Enstatite Chondrites , 1968 .

[82]  A. Rubin,et al.  Coolidge and Loongana 001: A new carbonaceous chondrite grouplet , 1995 .

[83]  The FU Orionis Phenomenon and Solar Nebula Material , 2001 .

[84]  A. Rubin,et al.  Ordinary chondrites: Bulk compositions, classification, lithophile-element fractionations and composition-petrographic type relationships , 1989 .

[85]  M. Bourot‐Denise,et al.  The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .

[86]  D. Sears,et al.  Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites , 1991 .

[87]  M. Lindstrom,et al.  Petrology and geochemistry of Patuxent Range 91501, a clast‐poor impact melt from the L‐chondrite parent body and Lewis Cliff 88663, an L7 chondrite , 2001 .

[88]  M. Zolensky,et al.  Mineralogical and chemical modification of components in CV3 chondrites: Nebular or asteroidal processing? , 1995 .

[89]  G. Lofgren,et al.  A comparison of FeO-rich, porphyritic olivine chondrules in unequilibrated chondrites and experimental analogues , 1993 .

[90]  A. Rubin,et al.  Abee and related EH chondrite impact-melt breccias , 1997 .

[91]  Robert T. Dodd,et al.  Pyroxenes in the Shaw (L-7) chondrite , 1975 .

[92]  W. Carlson,et al.  The Portales Valley meteorite breccia: evidence for impact-induced melting and metamorphism of an ordinary chondrite , 2001 .

[93]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[94]  K. Tomeoka,et al.  Dark inclusions in CO3 chondrites: new indicators of parent-body processes , 2003 .

[95]  G. J. Taylor,et al.  Accretion, metamorphism, and brecciation of ordinary chondrites: Evidence from petrologic studies of meteorites from Roosevelt County, New Mexico , 1986 .

[96]  A. Rubin,et al.  Initial 26Al/27Al in carbonaceous-chondrite chondrules: too little 26Al to melt asteroids , 2004 .

[97]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[98]  A. Rubin Petrologic, geochemical and experimental constraints on models of chondrule formation , 2000 .

[99]  D. J. Barber,et al.  The microstructure of Semarkona and Bishunpur , 1989 .

[100]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[101]  K. Keil,et al.  Metamorphism of the H-group chondrites - Implications from compositional and textural trends in chondrules , 1980 .

[102]  A. Bischoff Mineralogical characterization of primitive, type‐3 lithologies in Rumuruti chondrites , 2000 .

[103]  R. Housley,et al.  On the alteration of Allende chondrules and the formation of matrix , 1983 .

[104]  E. Anders,et al.  Isotopic anomalies of noble gases in meteorites and their origins—III. LL-chondrites , 1979 .

[105]  D. Sears,et al.  Measuring metamorphic history of unequilibrated ordinary chondrites , 1980, Nature.

[106]  J. Wood Metamorphism in chondrites , 1962 .

[107]  A. Brearley Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules. , 1996 .

[108]  J. Goldstein,et al.  A revision of metallographic cooling rate curves for chondrites , 1982 .

[109]  Chang-de,et al.  Kamacite and olivine in ordinary chondrites : Intergroup and intragroup relationships , 2002 .

[110]  S. Tachibana,et al.  Constraints on the Origin of Chondrules and CAIs from Short-lived and Long-lived Radionuclides , 2005 .

[111]  T. Mccoy,et al.  Systematics and Evaluation of Meteorite Classification , 2006 .

[112]  L. Leshin,et al.  16 O enrichments in aluminum-rich chondrules from ordinary chondrites , 2000 .

[113]  D. Sears,et al.  Size Sorting of Metal, Sulfide, and Chondrules in Sharps (H3.4) , 1998 .

[114]  M. Zolensky,et al.  Carbide-magnetite assemblages in type-3 ordinary chondrites , 1997 .

[115]  H. McSween,et al.  Pyroxene thermobarometry in LL-group chondrites and implications for parent body metamorphism , 1989 .

[116]  F. Herbert Primordial electrical induction heating of asteroids , 1989 .

[117]  J. A. Peck,et al.  The origin of ferrous zoning in Allende chondrule olivines , 1986 .

[118]  L. Bonal,et al.  Petrologic Type of CV3 Chondrites as Revealed by Raman Spectroscopy of Organic Matter , 2004 .

[119]  A. Rubin,et al.  Phosphate-sulfide assemblages and Al/Ca ratios in type-3 chondrites , 1985 .

[120]  G. Huss,et al.  The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history , 1996 .

[121]  Gerard P. Kuiper Origin of the Solar System , 1938 .

[122]  G. Merrill On metamorphism in meteorites , 1921 .

[123]  H. McSween,et al.  Pyroxene equilibration temperatures in metamorphosed ordinary chondrites , 1993 .

[124]  H. McSween Petrographic variations among carbonaceous chondrites of the Vigarano type , 1977 .

[125]  C. Sonett,et al.  Electromagnetic heating of minor planets in the early solar system , 1979 .

[126]  A. Davis,et al.  The distribution of aluminum-26 in the early Solar System—A reappraisal , 1995 .

[127]  A. Rubin Relatively Coarse-Grained Chondrule Rims in Type 3 Chondrites , 1984 .

[128]  H. McSween,et al.  A Thermal Model for the Differentiation of Asteroid 4 Vesta, Based on Radiogenic Heating☆ , 1998 .

[129]  Gary R. Huss,et al.  PRESOLAR DIAMOND, SIC, AND GRAPHITE IN PRIMITIVE CHONDRITES : ABUNDANCES AS A FUNCTION OF METEORITE CLASS AND PETROLOGIC TYPE , 1995 .

[130]  E. Anders Origin, age, and composition of meteorites , 1964 .

[131]  G. Wasserburg,et al.  An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites , 1998 .

[132]  A. Rubin,et al.  Mineralogy and petrology of amoeboid olivine inclusions in CO3 chondrites: Relationship to parent‐body aqueous alteration , 2002 .

[133]  M. Zolensky,et al.  What are the Petrologic Types of Thermally Metamorphosed CM Chondrites , 2005 .

[134]  J. R. Ashworth Matrix textures in unequilibrated ordinary chondrites , 1977 .

[135]  John T. Wasson,et al.  Gallium, germanium, indium and iridium variations in a suite of L-group chondrites , 1968 .

[136]  J. Wasson,et al.  Metal and associated phases in Bishunpur, a highly unequilibrated ordinary chondrite , 1981 .

[137]  E. Scott,et al.  Shock metamorphism of carbonaceous chondrites , 1991 .

[138]  D. Sears,et al.  Induced thermoluminescence and cathodoluminescence studies of meteorites: relevance to structure and active sites in feldspar , 1990 .

[139]  M. Zolensky,et al.  Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration , 1998 .

[140]  G. Herbig Some aspects of early stellar evolution that may be relevant to the origin of the solar system , 1978 .

[141]  H. McSween,et al.  Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .

[142]  N. Kita,et al.  A short duration of chondrule formation in the solar nebula: evidence from 26Al in Semarkona ferromagnesian chondrules , 2000 .

[143]  H. Nagahara Matrices of type 3 ordinary chondrites—primitive nebular records , 1984 .

[144]  G. Wasserburg,et al.  Aluminum‐26 in calcium‐aluminum‐rich inclusions and chondrules from unequilibrated ordinary chondrites , 2001 .

[145]  M. Bourot‐Denise,et al.  Origin and Metamorphic Redistribution of Silicon, Chromium, and Phosphorus in the Metal of Chondrites , 1994, Science.

[146]  Frans J. M. Rietmeijer,et al.  Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials , 1985, Nature.

[147]  J. Beckett,et al.  The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature , 2002 .

[148]  K. Keil,et al.  The matrices of unequilibrated ordinary chondrites: Implications for the origin and history of chondrites , 1981 .

[149]  A. Rubin,et al.  The compositional classification of chondrites: VII. The R chondrite group , 1996 .

[150]  A. Rubin Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites , 2003 .

[151]  J. Beckett,et al.  The activity of chromite in multicomponent spinels: Implications for T‐fO2 conditions of equilibrated H chondrites , 2004 .