ENHANCE: Accurate denoising of single-cell RNA-Seq data

Single-cell expression measurements are commonly affected by high levels of technical noise, posing challenges for data analysis and interpretation. Here, we propose ENHANCE, an algorithm that denoises single-cell RNA-Seq data by first performing nearest-neighbor aggregation and then inferring expression levels from principal components. We benchmark ENHANCE and three previously described methods on simulated data that closely mimic real datasets, and show that ENHANCE provides the best overall denoising accuracy.

[1]  Sarah A. Teichmann,et al.  Computational approaches for interpreting scRNA‐seq data , 2017, FEBS letters.

[2]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[4]  Shuqiang Li,et al.  CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq , 2016, Genome Biology.

[5]  James Hicks,et al.  Unravelling biology and shifting paradigms in cancer with single-cell sequencing , 2017, Nature Reviews Cancer.

[6]  Jingshu Wang,et al.  Gene expression distribution deconvolution in single-cell RNA sequencing , 2017, Proceedings of the National Academy of Sciences.

[7]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[8]  J. Marioni,et al.  Using single‐cell genomics to understand developmental processes and cell fate decisions , 2018, Molecular systems biology.

[9]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[10]  Tallulah S Andrews,et al.  False signals induced by single-cell imputation , 2018, F1000Research.

[11]  Jesse Gillis,et al.  Co-expression in Single-Cell Analysis: Saving Grace or Original Sin? , 2018, Trends in genetics : TIG.

[12]  Juan Carlos Fernández,et al.  Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms , 2014, Ann. Oper. Res..

[13]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[14]  Junying Yuan,et al.  Single-Cell RNA Sequencing: Unraveling the Brain One Cell at a Time. , 2017, Trends in molecular medicine.

[15]  Cole Trapnell,et al.  Defining cell types and states with single-cell genomics , 2015, Genome research.

[16]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[17]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[18]  Florian Wagner,et al.  K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data , 2017, bioRxiv.

[19]  Fabian J. Theis,et al.  Deep learning does not outperform classical machine learning for cell-type annotation , 2019, bioRxiv.

[20]  R. Satija,et al.  Single-cell RNA sequencing to explore immune cell heterogeneity , 2017, Nature Reviews Immunology.

[21]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[22]  Y. Kluger,et al.  Zero-preserving imputation of scRNA-seq data using low-rank approximation , 2018, bioRxiv.

[23]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[24]  Orit Rozenblatt-Rosen,et al.  Systematic comparative analysis of single cell RNA-sequencing methods , 2019, bioRxiv.

[25]  Angshul Majumdar,et al.  AutoImpute: Autoencoder based imputation of single-cell RNA-seq data , 2018, Scientific Reports.

[26]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[27]  Florian Wagner,et al.  Moana: A robust and scalable cell type classification framework for single-cell RNA-Seq data , 2018, bioRxiv.

[28]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[29]  Il-Youp Kwak,et al.  DrImpute: imputing dropout events in single cell RNA sequencing data , 2017, BMC Bioinformatics.

[30]  Sarah A. Teichmann,et al.  Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors , 2018, Science.

[31]  M. Robinson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data. , 2018, F1000Research.