Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

[This corrects the article DOI: 10.1371/journal.pone.0190092.].

[1]  J. Cornelissen,et al.  Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants , 2008 .

[2]  R. DeFries,et al.  A global overview of the conservation status of tropical dry forests , 2006 .

[3]  Trevor H. Booth,et al.  Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling , 2017, Climatic Change.

[4]  K. Feeley,et al.  Forest patches and the upward migration of timberline in the southern Peruvian Andes , 2013 .

[5]  Alice Boit,et al.  Resilience of Amazon forests emerges from plant trait diversity , 2016 .

[6]  P. M. Jørgensen,et al.  Catalogue of the Vascular Plants of Equador , 1999 .

[7]  Bosques tropicales secos de la región Pacífico Ecuatorial: diversidad, estructura, funcionamiento e implicaciones para la conservación. , 2012 .

[8]  Jennifer A. Miller,et al.  Mapping Species Distributions: Spatial Inference and Prediction , 2010 .

[9]  J. A. Ratter,et al.  An Overview of the Plant Diversity, Biogeography and Conservation of Neotropical Savannas and Seasonally Dry Forests , 2006 .

[10]  T. Hengl,et al.  Mapping the global depth to bedrock for land surface modeling , 2017 .

[11]  E. Lambin,et al.  Dynamic Causal Patterns of Desertification , 2004 .

[12]  T. A. Parker,et al.  Status of forest remnants in the Cordillera de la Costa and adjacent areas of southwestern Ecuador , 1992 .

[13]  Omri Allouche,et al.  Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) , 2006 .

[14]  R. Betts,et al.  Climate Change, Deforestation, and the Fate of the Amazon , 2008, Science.

[15]  J. Calvo-Alvarado,et al.  Tropical Dry Forests in the Americas: The Tropi-Dry Endeavor , 2013 .

[16]  A. Peterson,et al.  Effects of sample size on the performance of species distribution models , 2008 .

[17]  G. Sánchez‐Azofeifa,et al.  Extent and conservation of tropical dry forests in the Americas , 2010 .

[18]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[19]  S. Schneider,et al.  Climate Change, Elevational Range Shifts, and Bird Extinctions , 2008, Conservation biology : the journal of the Society for Conservation Biology.

[20]  Jordan Chamberlin,et al.  Assessing biodiversity conservation priorities: ecosystem risk and representativeness in continental Ecuador , 2002 .

[21]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[22]  Marcos Villacís Ressources en eau glaciaire dans les Andes d'Equateur en relation avec les variations du climat : le cas du volcan Antizana , 2008 .

[23]  J. Marengo,et al.  Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models , 2010 .

[24]  A. Jarvis,et al.  A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans , 2010, PloS one.

[25]  David R. Purkey,et al.  Simulating the implications of glaciers’ retreat for water management: a case study in the Rio Santa basin, Peru , 2012 .

[26]  A. Peterson,et al.  The crucial role of the accessible area in ecological niche modeling and species distribution modeling , 2011 .

[27]  G. Heuvelink,et al.  SoilGrids1km — Global Soil Information Based on Automated Mapping , 2014, PloS one.

[28]  Jörg Bendix,et al.  Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador , 2013, Ecological Studies.

[29]  S. Schneider,et al.  A contribution of Working Groups I, II and III to the Third Assessment Report of the Intergovernment Panel on Climate Change , 2001 .

[30]  Robert P. Anderson,et al.  Ecological Niches and Geographic Distributions , 2011 .

[31]  Matthew J. Smith,et al.  Protected areas network is not adequate to protect a critically endangered East Africa Chelonian: Modelling distribution of pancake tortoise, Malacochersus tornieri under current and future climates , 2013, bioRxiv.

[32]  Jason L. Brown SDMtoolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses , 2014 .

[33]  T. V. van Hintum,et al.  Robustness and accuracy of Maxent niche modelling for Lactuca species distributions in light of collecting expeditions , 2014, Plant Genetic Resources.

[34]  Reynaldo Linares‐Palomino,et al.  Diversity and endemism of woody plant species in the Equatorial Pacific seasonally dry forests , 2009, Biodiversity and Conservation.

[35]  Aguirre Mendoza,et al.  ESPECIES FORESTALES DE LOS BOSQUES SECOS DEL ECUADOR , 2012 .

[36]  J. Freile,et al.  Priority areas for biodiversity conservation in mainland Ecuador , 2017 .

[37]  M. RodrigoSierra,et al.  Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental , 1999 .

[38]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[39]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[40]  T. Sunderland,et al.  Tropical dry forests: The state of global knowledge and recommendations for future research , 2014 .

[41]  M. F. Siqueira,et al.  Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods , 2010 .

[42]  Y. Malhi,et al.  Upslope migration of Andean trees , 2011 .

[43]  S. Wunder The economics of deforestation: the example of Ecuador. , 2000 .

[44]  N. Diffenbaugh,et al.  Developing regional climate change scenarios for use in assessment of effects on human health and disease , 2008 .

[45]  J. Franklin,et al.  Plant diversity patterns in neotropical dry forests and their conservation implications , 2016, Science.

[46]  E. Dinerstein,et al.  The Global 200: Priority ecoregions for global conservation , 2002 .

[47]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[48]  J. Andel Novel Ecosystems: Intervening in the New Ecological World Order , 2013 .

[49]  F. Bongers,et al.  No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased , 2015 .

[50]  Margaret Kalacska,et al.  Research priorities for neotropical dry forests , 2005 .

[51]  Martin Jung,et al.  LecoS - A python plugin for automated landscape ecology analysis , 2016, Ecol. Informatics.

[52]  W. Reid,et al.  Keeping Options Alive: The Scientific Basis for Conserving Biodiversity , 1989 .

[53]  Ariel E. Lugo,et al.  The Emerging Era of Novel Tropical Forests , 2009 .

[54]  Alejandro Ordonez,et al.  Mapping climatic mechanisms likely to favour the emergence of novel communities , 2016 .

[55]  H. Wehrden,et al.  WOODY VEGETATION OF A PERUVIAN TROPICAL DRY FOREST ALONG A CLIMATIC GRADIENT DEPENDS MORE ON SOIL THAN ANNUAL PRECIPITATION , 2013 .

[56]  Brett R. Scheffers,et al.  Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being , 2017, Science.

[57]  Andreas Fries,et al.  Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes , 2016 .

[58]  J. Lamarque,et al.  Global Biodiversity: Indicators of Recent Declines , 2010, Science.

[59]  J. Franklin Species distribution models in conservation biogeography: developments and challenges , 2013 .