Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling.

[1]  Anthony C. Atkinson,et al.  Plots, transformations, and regression : an introduction to graphical methods of diagnostic regression analysis , 1987 .

[2]  P. Elliott,et al.  A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. , 2000, The Science of the total environment.

[3]  Bert Brunekreef,et al.  Estimating Long-Term Average Particulate Air Pollution Concentrations: Application of Traffic Indicators and Geographic Information Systems , 2003, Epidemiology.

[4]  Leonidas Ntziachristos,et al.  Formation potential of vehicle exhaust nucleation mode particles on-road and in the laboratory , 2005 .

[5]  Mark S Goldberg,et al.  Assessing Spatial Variability of Ambient Nitrogen Dioxide in Montréal, Canada, with a Land-Use Regression Model , 2005, Journal of the Air & Waste Management Association.

[6]  S. Moebus,et al.  Residence close to high traffic and prevalence of coronary heart disease. , 2006, European heart journal.

[7]  Michael Brauer,et al.  Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. , 2007, Environmental science & technology.

[8]  S. Rodríguez,et al.  The contributions of “minimum primary emissions” and “new particle formation enhancements” to the particle number concentration in urban air , 2007 .

[9]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[10]  R Erbel,et al.  Residential Exposure to Traffic Is Associated With Coronary Atherosclerosis , 2007, Circulation.

[11]  Michael Jerrett,et al.  The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies , 2007 .

[12]  Christer Johansson,et al.  The role of ambient temperature for particle number concentrations in a street canyon , 2007 .

[13]  J. Froines,et al.  Intra-community spatial variability of particulate matter size distributions in Southern California/Los Angeles , 2008 .

[14]  J. Gulliver,et al.  A review of land-use regression models to assess spatial variation of outdoor air pollution , 2008 .

[15]  Zoran Ristovski,et al.  Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure , 2008 .

[16]  Stephan Weber,et al.  Spatio-temporal covariation of urban particle number concentration and ambient noise , 2009 .

[17]  Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China , 2010 .

[18]  A Simpson,et al.  Modelling air pollution for epidemiologic research--Part I: A novel approach combining land use regression and air dispersion. , 2010, The Science of the total environment.

[19]  A. Peters,et al.  Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association , 2010, Circulation.

[20]  R. Harrison,et al.  New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities , 2011 .

[21]  S. Low Choy,et al.  Using the Generalised Additive Model to model the particle number count of ultrafine particles , 2011 .

[22]  Bert Brunekreef,et al.  Land use regression model for ultrafine particles in Amsterdam. , 2011, Environmental science & technology.

[23]  Johan Lindström,et al.  Comparing universal kriging and land-use regression for predicting concentrations of gaseous oxides of nitrogen (NOx) for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). , 2011, Atmospheric environment.

[24]  Michael Jerrett,et al.  Spatiotemporal analysis of air pollution and mortality in California based on the American Cancer Society cohort , 2011 .

[25]  Jukka Corander,et al.  Forecasting size-fractionated particle number concentrations in the urban atmosphere , 2012 .

[26]  X. Basagaña,et al.  Spatial distribution of ultrafine particles in urban settings: A land use regression model , 2012 .

[27]  Lianfa Li,et al.  Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California. , 2012, Atmospheric environment.

[28]  Karl-Heinz Häfele,et al.  OGC City Geography Markup Language (CityGML) Encoding Standard , 2012 .

[29]  R. Harrison,et al.  Particles, air quality, policy and health. , 2012, Chemical Society reviews.

[30]  M. Brauer,et al.  Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. , 2013, Environmental science & technology.

[31]  Geert Wets,et al.  Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon , 2013 .

[32]  Bert Brunekreef,et al.  Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project , 2013 .

[33]  M. Brauer,et al.  A land use regression model for ultrafine particles in Vancouver, Canada. , 2013, Environmental science & technology.

[34]  Jukka Corander,et al.  Evaluation of a statistical forecast model for size-fractionated urban particle number concentrations using data from five European cities , 2013 .

[35]  B. Festy Review of evidence on health aspects of air pollution – REVIHAAP Project. Technical Report. World Health Organization Regional Office for Europe 2013 , 2013 .

[36]  Marta Blangiardo,et al.  Using building heights and street configuration to enhance intraurban PM10, NO(X), and NO2 land use regression models. , 2013, Environmental science & technology.

[37]  Joachim Benner,et al.  CityGML 2.0 – Ein internationaler Standard für 3D-Stadtmodelle Teil 2: CityGML in der Praxis , 2013 .

[38]  Bert Brunekreef,et al.  Quantifying urban street configuration for improvements in air pollution models , 2013 .

[39]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[40]  Nico Bleux,et al.  Methodology for setup and data processing of mobile air quality measurements to assess the spatial variability of concentrations in urban environments. , 2013, Environmental pollution.

[41]  T. Petäjä,et al.  Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities , 2013 .

[42]  Stephan Weber,et al.  Variability of particle number concentration and particle size dynamics in an urban street canyon under different meteorological conditions. , 2013, The Science of the total environment.

[43]  Stephan Weber,et al.  Measuring and modelling the local-scale spatio-temporal variation of urban particle number size distributions and black carbon , 2014 .

[44]  Y. Ghassoun,et al.  Exploring the Benefits of 3D City Models in the Field of Urban Particles Distribution Modelling—A Comparison of Model Results , 2015 .

[45]  Chang-Fu Wu,et al.  Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area , 2015 .

[46]  M. Ketzel,et al.  Statistical modelling of aerosol particle number size distributions in urban and rural environments – A multi-site study , 2015 .

[47]  Michael Frueh,et al.  Plots Transformations And Regression An Introduction To Graphical Methods Of Diagnostic Regression Analysis , 2016 .