Critical Evaluation of Hot Forging Experiments: Case Study in Alumina

A new loading dilatometer was successfully developed and applied for hot forging experiments, assisted by two high-resolution laser beams and providing accurate determination of radial and axial strains. The application of various uniaxial loads linearly increased both radial and axial strain rates of cylindrical specimens if compared at constant density. Microstructural evolution during hot forging was followed with high-resolution scanning electron microscopy and quantitative analysis of pore size and orientation. Uniaxial loads led to elongated pores oriented in the direction of the applied load. This anisotropic microstructure exhibited an increased densification rate perpendicular to the loading axis, if free sintering was characterized after load removal. The imprinted anisotropy faded out during free sintering.

[1]  R. Gregg,et al.  Surface tension and the sintering force in copper , 1973 .

[2]  G. Scherer Sintering inhomogeneous glasses: Application to optical waveguides , 1979 .

[3]  G. Scherer,et al.  Viscoelastic‐Elastic Composites: I, General Theory , 1982 .

[4]  R. Raj,et al.  Sintering behavior of bi-modal powder compacts , 1984 .

[5]  L. C. Jonghe,et al.  Pore Shrinkage and Sintering Stress , 1984 .

[6]  L. C. Jonghe,et al.  Effect of Shear Stress on Sintering , 1984 .

[7]  G. Scherer,et al.  Viscous Sintering on a Rigid Substrate , 1985 .

[8]  R. Raj,et al.  Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate , 1985 .

[9]  R. M. Cannon,et al.  Viscoelastic stresses and sintering damage in heterogeneous powder compacts , 1986 .

[10]  G. Scherer Viscous Sintering under a Uniaxial Load , 1986 .

[11]  R. Raj,et al.  Shear Deformation and Densification of Powder Compacts , 1986 .

[12]  R. Raj Analysis of the sintering pressure , 1987 .

[13]  R. Raj,et al.  Sinter‐Forging Characteristics of fine‐Grained Zirconia , 1988 .

[14]  G. Scherer,et al.  On constrained sintering-II. Comparison of constitutive models , 1988 .

[15]  Rajendra K. Bordia,et al.  On constrained sintering—I. Constitutive model for a sintering body , 1988 .

[16]  R. McMeeking,et al.  A diffusional creep law for powder compacts , 1992 .

[17]  G. Lu,et al.  Effect of Mismatched Sintering Kinetics on Camber in a Low‐Temperature Cofired Ceramic Package , 1993 .

[18]  H. Riedel,et al.  Numerical simulation of Die pressing and sintering: development of constitutive equations , 1993 .

[19]  J. Svoboda,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—II. Diffusional densification and creep , 1994 .

[20]  H. Riedel,et al.  Equilibrium pore surfaces, sintering stresses and constitutive equations for the intermediate and late stages of sintering—I. computation of equilibrium surfaces , 1994 .

[21]  L. Winnubst,et al.  low‐Temperature Sinter Forging of Nanostructured Y‐TZP and YCe‐TZP , 1995 .

[22]  Robert M. McMeeking,et al.  A network model for initial stage sintering , 1998 .

[23]  J. Rödel,et al.  Cosintering Simulation and Experimentation: Case Study of Nanocrystalline Zirconia , 2001 .

[24]  J. Rödel,et al.  Experimental determination of sintering stresses and sintering viscosities , 2003 .

[25]  M. Harmer,et al.  Effect of Rigid Inclusions on the Densification and Constitutive Parameters of Liquid-Phase-Sintered YBa2Cu3O6+x Powder Compacts , 2003 .

[26]  J. Rödel,et al.  Constrained Film Sintering of Nanocrystalline TiO2 , 2004 .

[27]  J. Rödel,et al.  Laser-assisted high-resolution loading dilatometer and applications , 2004 .

[28]  Y. Ohya,et al.  Acoustic Emission from a Porcelain Body during Cooling , 2004 .

[29]  G. Messing,et al.  Determination of the Mechanical Response of Sintering Compacts by Cyclic Loading Dilatometry , 2005 .