Model Checking of macro Processes

Decidability of modal logics is not limited to finite systems. The alternation-free modal mu-calculus has already been shown to be decidable for context-free processes, with a worst case complexity which is linear in the size of the system description and exponential in the size of the formula. Like context-free processes correspond to the concept of procedures without parameters, macro processes correspond to procedures with procedure parameters. They too allow deciding mu-calculus formulae, as is shown in this paper by presenting both global (iterative) and local (tableaux-based) procedures. These decision procedures handle correctly also process systems which are defined by unguarded recursion. As expected, the worst case complexity depends on the highest type level in the process description, and it is k-exponential in the size of the formula for a system description with type level k.

[1]  Rance Cleaveland,et al.  Computing Behavioural Relations, Logically , 1991, ICALP.

[2]  Hardi Hungar Complexity of Proving Program Correctness , 1991, TACS.

[3]  Bernhard Steffen,et al.  Model Checking for Context-Free Processes , 1992, CONCUR.

[4]  Johan Lewi,et al.  A Linear Local Model Checking Algorithm for CTL , 1993, CONCUR.

[5]  Michael J. Fischer,et al.  Grammars with Macro-Like Productions , 1968, SWAT.

[6]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[7]  Hardi Hungar The Complexity of Verifying Functional Programs , 1993, STACS.

[8]  Werner Damm,et al.  An Automata-Theoretical Characterization of the OI-Hierarchy , 1986, Inf. Control..

[9]  Bernhard Steffen,et al.  Pushdown Processes: Parallel Composition and Model Checking , 1994, CONCUR.

[10]  Julian Bradfield Verifying Temporal Properties of Systems , 1992, Progress in Theoretical Computer Science.

[11]  Lu Tian,et al.  Deciding Bisimilarity of Normed Context-Free Processes is in Sigma^p_2 , 1994, Theor. Comput. Sci..

[12]  Colin Stirling,et al.  Verifying Temporal Properties of Processes , 1990, CONCUR.

[13]  Kim G. Larsen,et al.  Efficient Local Correctness Checking , 1992, CAV.

[14]  Hardi Hungar,et al.  Local Model-Checking for Context-Free Processes , 1993, Nord. J. Comput..

[15]  Chin-Laung Lei,et al.  Efficient Model Checking in Fragments of the Propositional Mu-Calculus (Extended Abstract) , 1986, LICS.

[16]  J. Engelfriet,et al.  IO and OI , 1975 .

[17]  Werner Damm,et al.  An Automata-Theoretic Characterization of the OI-Hierarchy , 1982, ICALP.

[18]  Joseph Y. Halpern,et al.  Reasoning about Procedures as Parameters in the Language L4 , 1989, Inf. Comput..

[19]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[20]  Jan A. Bergstra,et al.  Process theory based on bisimulation semantics , 1988, REX Workshop.

[21]  Annegret Habel,et al.  Hyperedge Replacement: Grammars and Languages , 1992, Lecture Notes in Computer Science.

[22]  Didier Caucal,et al.  On the transition graphs of automata and grammars , 1990, WG.

[23]  Jerzy Tiuryn,et al.  The Hierarchy of Finitely Typed Functional Programs (Short Version) , 1987, LICS.

[24]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[25]  Werner Damm,et al.  The IO- and OI-Hierarchies , 1982, Theor. Comput. Sci..

[26]  Kim G. Larsen,et al.  Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion , 1990, Theor. Comput. Sci..

[27]  Rance Cleaveland,et al.  The Concurrency Workbench , 1990, Automatic Verification Methods for Finite State Systems.

[28]  Joost Engelfriet,et al.  IO and OI. I , 1977, J. Comput. Syst. Sci..

[29]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theor. Comput. Sci..

[30]  Andreas Goerdt,et al.  A Hoare Calculus for Functions Defined by Recursion on Higher Types , 1985, Logic of Programs.

[31]  Annegret Habel,et al.  May we introduce to you: hyperedge replacement , 1986, Graph-Grammars and Their Application to Computer Science.

[32]  Henrik Reif Andersen Model Checking and Boolean Graphs , 1992, ESOP.