Sodium-Assisted TiO2 Nanotube Arrays of Novel Electrodes for Photochemical Sensing Platform

[1]  J. Jeevanandam,et al.  Aggrandize efficiency of ultra-thin silicon solar cell via topical clustering of silver nanoparticles , 2018, Nano-Structures & Nano-Objects.

[2]  Yu Fu,et al.  A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications , 2018, Nanoscale Research Letters.

[3]  K. Joya,et al.  Titanium Dioxide Modifications for Energy Conversion: Learnings from Dye-Sensitized Solar Cells , 2018, Titanium Dioxide - Material for a Sustainable Environment.

[4]  P. Lakshmi Praveen 7-Hexyloxy-3-[4’-(3-methylbutyloxy) phenyl]-4H-1-benzopyran-4-one: Study of Smectic behaviour and UV absorption profile , 2018 .

[5]  X. Zu,et al.  Influence of different aluminum salts on the photocatalytic properties of Al doped TiO2 nanoparticles towards the degradation of AO7 dye , 2017, Scientific Reports.

[6]  Shady Abd El-Nasser Fabrication and characterization of semiconductor based photo-catalysis for light-Driven water splitting , 2017 .

[7]  D. P. Ojha,et al.  UV spectral characterization of a smectic-C liquid crystal: Theoretical support to the experiment , 2017 .

[8]  M. Morris,et al.  A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity , 2015 .

[9]  F. Bai,et al.  Open-top TiO2 nanotube arrays with enhanced photovoltaic and photochemical performances via a micromechanical cleavage approach , 2015 .

[10]  Li Wang,et al.  Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. , 2015, Journal of the American Chemical Society.

[11]  B. Ohtani,et al.  Visible light activity of rare earth metal doped (Er3+, Yb3+ or Er3+/Yb3+) titania photocatalysts , 2015 .

[12]  Jinhua Ye,et al.  Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. , 2014, Chemical communications.

[13]  Ce Yang,et al.  Controllable Nd₂Fe₁₄B/α-Fe nanocomposites: chemical synthesis and magnetic properties. , 2014, Nanoscale.

[14]  Hongsen Li,et al.  A Facile One-Pot Synthesis of TiO2/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite as Anode Materials For High-Rate Lithium-Ion Batteries , 2014 .

[15]  Lan Sun,et al.  Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis , 2014 .

[16]  Xianhua Hou,et al.  Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect , 2014 .

[17]  Tarek A. Kandiel,et al.  Solvent-free hydrothermal synthesis of anatase TiO2 nanoparticles with enhanced photocatalytic hydrogen production activity , 2013 .

[18]  H. Dinh,et al.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols , 2013 .

[19]  R. Dabrowski,et al.  Temperature variation dielectric behavior of TiO2 nanocabbages and doped W-182(AFLC) , 2013 .

[20]  B. Tang,et al.  Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation , 2013 .

[21]  R. Chtourou,et al.  Photocatalytic activity of TiO2 nanofibers sensitized with ZnS quantum dots , 2013 .

[22]  D. P. Ojha,et al.  Molecular Structure and Ordering in a Fluorinated Smectogenic Compound—A Statistical Thermodynamic Approach , 2013 .

[23]  P. M. Perillo,et al.  The gas sensing properties at room temperature of TiO2 nanotubes by anodization , 2012 .

[24]  K. Pal,et al.  Optical, dielectric and microscopic observation of different phases TiO2 metal host nanowires , 2012 .

[25]  Hu Guoxin,et al.  High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: preparation and characterization. , 2011, Journal of hazardous materials.

[26]  P. L. Praveen,et al.  Role of molecular rigidity on phase organization of a smectic liquid crystal—A theoretical model , 2011 .

[27]  N. Dimitrijević,et al.  The Effects of Pt Doping on the Structure and Visible Light Photoactivity of Titania Nanotubes , 2010 .

[28]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[29]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[30]  Feng Li,et al.  Amorphous TiO2 nanotube arrays for low-temperature oxygen sensors , 2008, Nanotechnology.

[31]  Scott W. Donne,et al.  Flat-Band Potential of a Semiconductor: Using the Mott Schottky Equation. , 2007 .

[32]  Jiaguo Yu,et al.  Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes , 2005 .

[33]  Xie Quan,et al.  Preparation of titania nanotubes and their environmental applications as electrode. , 2005, Environmental science & technology.

[34]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[35]  X. Bokhimi,et al.  Photodecomposition of 2,4-dinitroaniline on Li/TiO2 and Rb/TiO2 nanocrystallite sol–gel derived catalysts , 2001 .

[36]  T. Desai,et al.  TiO2 Nanotube Arrays as Smart Platforms for Biomedical Applications , 2018 .

[37]  H. Sutrisno Synthesis of TiO2-polycrystalline microspheres and its microstructure at various high temperatures , 2017 .

[38]  B. Erjavec,et al.  Enhanced photocatalytic activity of single-phase, nanocomposite and physically mixed TiO2 polymorphs , 2015 .

[39]  Robin A. Mcintyre,et al.  Transition metal-doped titanium(IV) dioxide: Characterisation and influence on photodegradation of poly(vinyl chloride) , 2006 .