Evolving descriptors for texture segmentation

A new method for texture segmentation is proposed. In this supervised method, texture descriptors are based on grey level co-occurrences. A texture descriptor corresponds to an individual in a population, and a population corresponds to a given texture class. A genetic algorithm generates several distinct and efficient individuals adapted to discriminate proposed textures. Then, the individuals compete for territories in an image composed of samples derived from the learned textures. At the end of the simulated evolution, population territories match the texture regions of the image. The method provides excellent results on various examples of synthetic and natural textures.

[1]  Michael Unser,et al.  Multiresolution Feature Extraction and Selection for Texture Segmentation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  S. N. Jayaramamurthy,et al.  Automatic Generation of Texture Feature Detectors , 1972, IEEE Transactions on Computers.

[4]  William B. Thompson,et al.  Building a Distance Function for Gestalt Grouping , 1975, IEEE Transactions on Computers.

[5]  Pierre L'Ecuyer,et al.  Efficient and portable combined random number generators , 1988, CACM.

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[8]  Torfinn Taxt,et al.  Local frequency features for texture classification , 1994, Pattern Recognit..

[9]  Jack Sklansky,et al.  Image Segmentation and Feature Extraction , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[11]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  R.M. Haralick,et al.  Statistical and structural approaches to texture , 1979, Proceedings of the IEEE.

[13]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[14]  William R. Uttal,et al.  A model of visual texture discrimination using multiple weak operators and spatial averaging , 1992, Pattern Recognit..

[15]  Michael Spann,et al.  Texture feature performance for image segmentation , 1990, Pattern Recognit..

[16]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[17]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  John R. Sullins Distributed Learning of Texture Classification , 1990, ECCV.

[19]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[20]  Alexander A. Sawchuk,et al.  Supervised Textured Image Segmentation Using Feature Smoothing and Probabilistic Relaxation Techniques , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.