A Stable Divide and Conquer Algorithm for the Unitary Eigenproblem
暂无分享,去创建一个
[1] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[2] Douglas M. Priest,et al. Algorithms for arbitrary precision floating point arithmetic , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.
[3] Danny C. Sorensen,et al. An implementation of a divide and conquer algorithm for the unitary eigen problem , 1992, TOMS.
[4] Ji-Guang Sun. Residual Bounds on Approximate Solutions for the Unitary Eigenproblem , 1996, SIAM J. Matrix Anal. Appl..
[5] William B. Gragg,et al. The QR algorithm for unitary Hessenberg matrices , 1986 .
[6] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[7] L. Reichel,et al. On the eigenproblem for orthogonal matrices , 1986, 1986 25th IEEE Conference on Decision and Control.
[8] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[9] L. Reichel,et al. A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .
[10] William B. Gragg,et al. Constructing a Unitary Hessenberg Matrix from Spectral Data , 1991 .
[11] Jack J. Dongarra,et al. A fully parallel algorithm for the symmetric eigenvalue problem , 1985, PPSC.
[12] Lothar Reichel,et al. Determination Of Pisarenko Frequency Estimates As Eigenvalues Of An Orthogonal Matrix , 1988, Optics & Photonics.
[13] Gene H. Golub,et al. Matrix computations , 1983 .
[14] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..