AutoCluster: Meta-learning Based Ensemble Method for Automated Unsupervised Clustering
暂无分享,去创建一个
Yue Liu | Wenjie Tian | Shuang Li | Wenjie Tian | Yue Liu | Shuang Li
[1] Pasi Fränti,et al. K-means properties on six clustering benchmark datasets , 2018, Applied Intelligence.
[2] André Carlos Ponce de Leon Ferreira de Carvalho,et al. A new data characterization for selecting clustering algorithms using meta-learning , 2019, Inf. Sci..
[3] Marco F. Huber,et al. Benchmark and Survey of Automated Machine Learning Frameworks , 2019, J. Artif. Intell. Res..
[4] Olatz Arbelaitz,et al. An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..
[5] Leandro Nunes de Castro,et al. Clustering algorithm selection by meta-learning systems: A new distance-based problem characterization and ranking combination methods , 2015, Inf. Sci..
[6] Wilfrido Gómez-Flores,et al. Automatic clustering using nature-inspired metaheuristics: A survey , 2016, Appl. Soft Comput..
[7] Anil K. Jain. Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..
[8] Nawid Jamali,et al. Majority Voting: Material Classification by Tactile Sensing Using Surface Texture , 2011, IEEE Transactions on Robotics.
[9] Luís Torgo,et al. OpenML: networked science in machine learning , 2014, SKDD.
[10] Boris Delibasic,et al. Extending meta-learning framework for clustering gene expression data with component-based algorithm design and internal evaluation measures , 2016, Int. J. Data Min. Bioinform..