Defect tolerance in QCA-based PLAs

Defect tolerance will be critical in any system with nano-scale feature sizes. This paper examines some fundamental aspects of defect tolerance for a reconfigurable system based on magnetic quantum-dot cellular automata (MQCA). MQCA performs logical operations and moves data by manipulating the polarizations of nano-scale magnets, has been experimentally demonstrated, and operates at room temperature. We consider how specific defects will impact device functionality. Within this context, we introduce techniques for mapping Boolean logic functions to a defective system architecture (a reconfigurable programmable logic array design for MQCA). Simulation results show that our new mapping techniques can achieve much higher yields than existing techniques for nanowire crossbar PLAs.

[1]  A. Imre Majority Logic Gate for Magnetic Quantum-Dot , 2007 .

[2]  Scott Hauck,et al.  The Future of Integrated Circuits: A Survey of Nanoelectronics , 2010, Proceedings of the IEEE.

[3]  A. Dzurak,et al.  Demonstration of a silicon-based quantum cellular automata cell , 2006 .

[4]  Michael T. Niemier,et al.  Using CAD to shape experiments in molecular QCA , 2006, ICCAD.

[5]  MICHAEL DEMJANENKO,et al.  Yield enhancement of field programmable logic arrays by inherent component redundancy , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[8]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[9]  Alexandra Imre,et al.  Experimental study of nanomagnets for magnetic quantum-dot cellular automata (MQCA) logic applications , 2005 .

[10]  S. Gai,et al.  Fault detection in programmable logic arrays , 1986, Proceedings of the IEEE.

[11]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[12]  Garrett S. Rose,et al.  Inversion schemes for sublithographic programmable logic arrays , 2009, IET Comput. Digit. Tech..

[13]  Michael T. Niemier,et al.  Fault Models and Yield Analysis for QCA-Based PLAs , 2007, 2007 International Conference on Field Programmable Logic and Applications.

[14]  Ramesh Karri,et al.  Topology aware mapping of logic functions onto nanowire-based crossbar architectures , 2006, 2006 43rd ACM/IEEE Design Automation Conference.

[15]  Mohamed A. Ismail,et al.  A new algorithm for subgraph optimal isomorphism , 1998, Pattern Recognit..

[16]  M J Donahue,et al.  OOMMF User's Guide, Version 1.0 , 1999 .

[17]  C. Lent,et al.  Clocking of molecular quantum-dot cellular automata , 2001 .

[18]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[19]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[20]  Mehdi Baradaran Tahoori,et al.  Design and characterization of an and-or-inverter (AOI) gate for QCA implementation , 2004, GLSVLSI '04.

[21]  Fabrizio Lombardi,et al.  Modeling QCA defects at molecular-level in combinational circuits , 2005, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05).

[22]  F. Lombardi,et al.  On the evaluation of scaling of QCA devices in the presence of defects at manufacturing , 2005, IEEE Transactions on Nanotechnology.

[23]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[24]  R. Stanley Williams,et al.  Nanoelectronic architectures , 2005 .

[25]  Michael J. Wilson,et al.  Nanowire-based sublithographic programmable logic arrays , 2004, FPGA '04.

[26]  C. Lent,et al.  Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. , 2003, Journal of the American Chemical Society.

[27]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.