On the Numerical Calculation of the Roots of Special Functions Satisfying Second Order Ordinary Differential Equations

We describe a method for calculating the roots of special functions satisfying second order linear ordinary differential equations. It exploits the recent observation that the solutions of a large class of such equations can be represented via nonoscillatory phase functions, even in the high-frequency regime. Our algorithm achieves near machine precision accuracy and the time required to compute one root of a solution is independent of the frequency of oscillations of that solution. Moreover, despite its great generality, our approach is competitive with specialized, state-of-the-art methods for the construction of Gaussian quadrature rules of large orders when it used in such a capacity. The performance of the scheme is illustrated with several numerical experiments and a Fortran implementation of our algorithm is available at the author's website.

[1]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[2]  Z. Nehari Bounded analytic functions , 1950 .

[3]  L. Trefethen,et al.  Piecewise smooth chebfuns , 2010 .

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  I. BOGAERT,et al.  O(1) Computation of Legendre Polynomials and Gauss-Legendre Nodes and Weights for Parallel Computing , 2012, SIAM J. Sci. Comput..

[6]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[7]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[8]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[9]  James Bremer,et al.  On the asymptotics of Bessel functions in the Fresnel regime , 2014, 1409.4100.

[10]  Ignace Bogaert,et al.  Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights , 2014, SIAM J. Sci. Comput..

[11]  M. Goldstein,et al.  Bessel functions for large arguments , 1958 .

[12]  James Bremer,et al.  On the existence of nonoscillatory phase functions for second order ordinary differential equations in the high-frequency regime , 2015, J. Comput. Phys..

[13]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[14]  Rajesh Sharma,et al.  Asymptotic analysis , 1986 .

[15]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[16]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[17]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[18]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[19]  Wolfgang Buehring AN ASYMPTOTIC EXPANSION FOR A RATIO OF PRODUCTS OF GAMMA FUNCTIONS , 2000 .

[20]  Paul N. Swarztrauber,et al.  On Computing the Points and Weights for Gauss-Legendre Quadrature , 2002, SIAM J. Sci. Comput..

[21]  E. E. Kummer De generali quadam aequatione differentiali tertii ordinis. , 1887 .

[22]  Robert Kohl,et al.  Introduction To Hp Spaces , 2016 .

[23]  Leslie Greengard,et al.  Spectral integration and two-point boundary value problems , 1991 .

[24]  G. Akrivis A First Course In The Numerical Analysis Of Differential Equations [Book News & Reviews] , 1998, IEEE Computational Science and Engineering.

[25]  Leon M. Hall,et al.  Special Functions , 1998 .

[26]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[27]  Hans-J. Runckel On the zeros of the hypergeometric function , 1971 .

[28]  František Neuman,et al.  Global Properties of Linear Ordinary Differential Equations , 1992 .

[29]  Javier Segura Reliable Computation of the Zeros of Solutions of Second Order Linear ODEs Using a Fourth Order Method , 2010, SIAM J. Numer. Anal..

[30]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[31]  Alex Townsend,et al.  Fast computation of Gauss quadrature nodes and weights on the whole real line , 2014, 1410.5286.

[32]  L. J. Comrie,et al.  Mathematical Tables and Other Aids to Computation. , 1946 .

[33]  BOUND ON THE EXTREME ZEROS OF ORTHOGONAL POLYNOMIALS , 2010 .

[34]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[35]  V. Rokhlin,et al.  Improved estimates for nonoscillatory phase functions , 2015, 1505.05548.

[36]  J. Bremer On the numerical solution of second order differential equations in the high-frequency regime , 2014, 1409.6049.

[37]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[38]  Marco Vianello,et al.  The “phase function” method to solve second-order asymptotically polynomial differential equations , 2012, Numerische Mathematik.