Algebraic differential equations and rational control systems

An equivalence is shown between realizability of input/output (i/o) operators by rational control systems and high-order algebraic differential equations for (i/o) pairs. This generalizes, to nonlinear systems, the equivalence between autoregressive representations and finite-dimensional linear realizability.

[1]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[2]  J. Lo Global Bilinearization of Systems with Control Appearing Linearly , 1975 .

[3]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[4]  Eduardo Sontag ON THE INTERNAL REALIZATION OF NONLINEAR BEHAVIORS , 1977 .

[5]  Eduardo Sontag Polynomial Response Maps , 1979 .

[6]  Thomas Kailath,et al.  Linear Systems , 1980 .

[7]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[8]  Michel Fliess,et al.  Une Application De L'Algebre Differentielle Aux Systems Reguliers (Ou Bilineaires) , 1982 .

[9]  M. Fliess,et al.  A Finiteness Criterion for Nonlinear Input–Output Differential Systems , 1983 .

[10]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[11]  Héctor J. Sussmann,et al.  Lie brackets and real analyticity in control theory , 1985 .

[12]  A. Isidori Nonlinear Control Systems: An Introduction , 1986 .

[13]  N. Harris McClamroch,et al.  Singular systems of differential equations as dynamic models for constrained robot systems , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[14]  Zbigniew Bartosiewicz,et al.  Rational systems and observation fields , 1987 .

[15]  Zbigniew Bartosiewicz Minimal polynomial realizations , 1988, Math. Control. Signals Syst..

[16]  A. A. Desrochers,et al.  Modeling of nonlinear discrete-time systems from input-output data , 1988, Autom..

[17]  Giuseppe Conte,et al.  Un Théorème sur la Représentation Entrée-Sortie d'un Système Non Linéaire , 1988 .

[18]  Eduardo Sontag Bilinear realizability is equivalent to existence of a singular affine differential i/o equation , 1988 .

[19]  Françoise Lamnabhi-Lagarrigue,et al.  State space realizations of nonlinear systems defined by input-output differential equations , 1988 .

[20]  Torkel Glad,et al.  Nonlinear State Space and Input Output Descriptions using Differential Polynomials (Revised Version) , 1988 .

[21]  Eduardo D. Sontag,et al.  Deterministic Finite Dimensional Systems , 1988 .

[22]  Eduardo Sontag,et al.  On two definitions of observation spaces , 1989 .

[23]  M. Fliess Automatique et corps différentiels , 1989 .

[24]  Alberto Isidori,et al.  New Trends in Nonlinear Control Theory , 1989 .

[25]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[26]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[27]  J. Willems Paradigms and puzzles in the theory of dynamical systems , 1991 .

[28]  Sette Diop,et al.  Elimination in control theory , 1991, Math. Control. Signals Syst..

[29]  Eduardo Sontag,et al.  Generating series and nonlinear systems: Analytic aspects, local realizability, and i/o representations , 1992 .