Evaluation of variations in the shape of grain types using principal components analysis of the elliptic Fourier descriptors

[1]  D. F. Putnam,et al.  Canada: A Regional Analysis , 1970 .

[2]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[3]  E. Shwedyk,et al.  Discrimination of wheat class and variety by digital image analysis of whole grain samples , 1987 .

[4]  Honor C. Prentice,et al.  Automated image acquisition and morphometric description , 1988 .

[5]  Burt Pd A regional analysis. , 1993, RDH.

[6]  T. Mclellan,et al.  THE ROLES OF HETEROCHRONY AND HETEROBLASTY IN THE DIVERSIFICATION OF LEAF SHAPES IN BEGONIA DREGEI (BEGONIACEAE) , 1993 .

[7]  Seishi Ninomiya,et al.  Quantitative Evaluation of Soybean (Glycine max L. Merr.) Leaflet Shape by Principal Component Scores Based on Elliptic Fourier Descriptor , 1995 .

[8]  Samir Majumdar,et al.  Classification of cereal grains using machine vision , 1997 .

[9]  M. Nair,et al.  Dockage identification in wheat using machine vision , 1998 .

[10]  Hamit Köksel,et al.  Use of statistical filters in the classification of wheats by image analysis , 1998 .

[11]  Süleyman Mazlum,et al.  INTERPRETATION OF WATER QUALITY DATA BY PRINCIPAL COMPONENTS ANALYSIS , 1999 .

[12]  Digvir S. Jayas,et al.  Classification of cereal grains using machine vision: I. Morphology models. , 2000 .

[13]  Evaluation of tuber shape of yam (Dioscorea alata L.) cultivars by image analysis and elliptic Fourier descriptors. , 2000 .

[14]  Digvir S. Jayas,et al.  CLASSIFICATION OF CEREAL GRAINS USING MACHINE VISION: III. TEXTURE MODELS , 2000 .

[15]  Seiji Matsuura,et al.  Diallel Analysis of Root Shape of Japanese Radish (Raphanus sativus L.) Based on Elliptic Fourier Descriptors , 2000 .

[16]  Digvir S. Jayas,et al.  CLASSIFICATION OF CEREAL GRAINS USING MACHINE VISION: IV. COMBINED MORPHOLOGY, COLOR, AND TEXTURE MODELS , 2000 .

[17]  S. Shouche,et al.  Shape analysis of grains of Indian wheat varieties , 2001 .

[18]  Seishi Ninomiya,et al.  The Evaluation of Genotype × Environment Interactions of Citrus Leaf Morphology Using Image Analysis and Elliptic Fourier Descriptors , 2002 .

[19]  N. S. Visen,et al.  Cereal Grain and Dockage Identification using Machine Vision , 2003 .

[20]  Seiji Matsuura,et al.  Evaluation of variation of root shape of Japanese radish (Raphanus sativus L.) based on image analysis using elliptic Fourier descriptors , 1998, Euphytica.

[21]  N. Kuramoto,et al.  Identification of Rhus succedanea L. Cultivars Using Elliptic Fourier Descriptors Based on Fruit Shape , 2004 .

[22]  Igor Burstyn,et al.  Principal component analysis is a powerful instrument in occupational hygiene inquiries. , 2004, The Annals of occupational hygiene.

[23]  Seishi Ninomiya,et al.  Analysis of petal shape variation of Primula sieboldii by elliptic fourier descriptors and principal component analysis. , 2004, Annals of botany.

[24]  S. Ninomiya,et al.  Analysis of petal shape variation of Primula sieboldii by elliptic fourier descriptors and principal component analysis. , 2004, Annals of botany.

[25]  Seishi Ninomiya,et al.  Quantitative evaluation of common buckwheat (Fagopyrum esculentum Moench) kernel shape by elliptic Fourier descriptor , 2004, Euphytica.

[26]  A. Samal,et al.  Plant species identification using Elliptic Fourier leaf shape analysis , 2006 .

[27]  D. Jayas,et al.  Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images , 2008 .

[28]  Mihoshi Yokoo,et al.  Quantitative analysis of corolla shapes and petal contours in single-flower cultivars of lisianthus , 2009 .

[29]  Federico Pallottino,et al.  Quantitative evaluation of Tarocco sweet orange fruit shape using optoelectronic elliptic Fourier based analysis , 2009 .

[30]  H. K. Mebatsion,et al.  A Fourier analysis based algorithm to separate touching kernels in digital images , 2011 .

[31]  Christophe Godin,et al.  Original paper: A novel profile based model for virtual representation of quasi-symmetric plant organs , 2011 .