A higher order finite element for laminated beams

Abstract This article presents the derivation of a new finite element model for laminated composite beams. The model includes sufficient degrees of freedom to allow the cross-sections of each lamina to deform into a shape which includes up through cubic terms in the thickness coordinate. The element does not require additional axial or transverse degrees of freedom beyond those necessary for a single lamina. The shape functions assure compatability of deformation between laminae. The element consequently admits shear deformation up through quadratic terms for each lamina but not interfacial slip or delamination. Numerical results are compared with other theoretical and experimental investigations.

[1]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[2]  Distribution of shearing stresses in a composite beam under transverse loading , 1978 .

[3]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[4]  R. Nickel,et al.  Convergence of consistently derived Timoshenko beam finite elements , 1972 .

[6]  Georges Mouret,et al.  Cours de mécanique appliquée , 1913 .

[7]  R. J. Ross,et al.  Bending of multilayer sandwich beams. , 1968 .

[8]  M. Levinson,et al.  A new rectangular beam theory , 1981 .

[9]  D. Krajcinovic Sandwich Beam Analysis , 1972 .

[10]  F. Yuan,et al.  Higher-order finite element for short beams , 1988 .

[11]  Ajaya K. Gupta,et al.  Error in eccentric beam formulation , 1977 .

[12]  Paul Seide,et al.  Triangular finite element for analysis of thick laminated plates , 1987 .

[13]  Robert E. Miller Reduction of the error in eccentric beam modelling , 1980 .

[14]  P. Tong,et al.  Finite Element Solutions for Laminated Thick Plates , 1972 .

[15]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[16]  Paul Seide,et al.  An improved approximate theory for the bending of laminated plates , 1980 .

[17]  Robert E. Miller,et al.  A new finite element for laminated composite beams , 1989 .

[18]  I. K. Silverman Flexure of Laminated Beams , 1980 .

[19]  Marcelo Epstein,et al.  A finite element formulation for multilayered and thick plates , 1983 .

[20]  D. K. Rao Static Response of Stiff-Cored Unsymmetric Sandwich Beams , 1976 .

[21]  K. M. Rao,et al.  Exact Analysis of Unsymmetric Laminated Beam , 1979 .

[22]  R. W. Little,et al.  Theory of bending multi-layer sandwich plates. , 1967 .

[23]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[24]  I. U. Ojalvo Departures from classical beam theory in laminated, sandwich, and short beams , 1977 .

[25]  R. Gerstner Stresses in a Composite Cantilever , 1968 .

[26]  H. A. Evensen,et al.  Interlaminar Shear in Laminated Composites Under Generalized Plane Stress , 1970 .

[27]  Charles W. Bert,et al.  A critical evaluation of new plate theories applied to laminated composites , 1984 .

[28]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[29]  R.L. Sierakowski,et al.  On Interlaminar Shear Stresses in Composites , 1970 .

[30]  Y. K. Cheung,et al.  Bending and vibration of multilayer sandwich beams and plates , 1973 .

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .

[32]  N. J. Hoff,et al.  Bending and Buckling of Sandwich Beams , 1948 .