Formation and characterization of silver nanoparticles embedded in optical transparent materials for plasmonic sensor surfaces

Abstract Plasmonic nanostructures promise sensing capabilities with the potential for ultrasensitive and robust assays in life sciences and biomedicine. Silver island films represent an interesting and straightforward alternative for the implementation of substrate-attached plasmonic nanostructures. The temperature-induced particle-forming behavior of thin silver seed films deposited on glass substrates and on polycrystalline silicon films is represented. The measured extinction spectra reflect the different size distributions and shapes. The covering of the particles with different optical transparent film materials like ZnO, Al2O3, SiNx, and SiOx leads to a further shift in the resonance maximum due to their refractive index. The SiOx system shows an additional long term change in the extinction spectrum in contrast to ZnO, Al2O3, and SiNx. Thin silver films covered with Al2O3 were used in order to proof the system as a sensor element for analyte detection (glucose solution).

[1]  J. Tominaga,et al.  The size control of silver nano-particles in SiO2 matrix film , 2005 .

[2]  M. Grimaldi,et al.  Detailed investigation of the influence of the process parameters on the nano-morphology of Ag deposited on SiC by radio-frequency sputtering , 2011 .

[3]  Harry A. Atwater,et al.  Plasmonic light trapping in thin-film Si solar cells , 2012 .

[4]  H. Nishihara,et al.  Preparation of optical resins containing dispersed gold nanoparticles by the matrix sputtering method. , 2011, Angewandte Chemie.

[5]  Jongsung Park,et al.  Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells , 2013, Plasmonics.

[6]  J. Jiménez,et al.  Real-time optical microspectroscopy and activation energy of Ag nanoparticle growth in thin silica films , 2012 .

[7]  K. Catchpole,et al.  Effect of Nanoparticle Size Distribution on the Performance of Plasmonic Thin-Film Solar Cells: Monodisperse Versus Multidisperse Arrays , 2013, IEEE Journal of Photovoltaics.

[8]  F. Ruffino,et al.  Kinetic mechanism of the thermal-induced self-organization of Au/Si nanodroplets on Si"100…: Size and roughness evolution , 2008 .

[9]  M. Wuttig,et al.  Photochromic silver nanoparticles fabricated by sputter deposition , 2005 .

[10]  A. Csaki,et al.  Localized surface plasmon resonance (LSPR) study of DNA hybridization at single nanoparticle transducers , 2013, Journal of Nanoparticle Research.

[11]  Dong Wang,et al.  Two-dimensional nanoparticle arrays formed by dewetting of thin gold films deposited on pre-patterned substrates , 2011 .

[12]  G. Schütz,et al.  Gold nanocrystals in high-temperature superconducting films: creation of pinning patterns of choice , 2013 .

[13]  D. Barreca,et al.  Influence of process parameters on the morphology of Au∕SiO2 nanocomposites synthesized by radio-frequency sputtering , 2004 .

[14]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[15]  H. Okamoto,et al.  Visualizing the optical field structures in metal nanostructures , 2013 .

[16]  Tae-Sik Yoon,et al.  Comparison of the agglomeration behavior of Au and Cu films sputter deposited on silicon dioxide , 2003 .

[17]  A. Gawlik,et al.  CW-diode laser crystallization of sputtered amorphous silicon on glass, SiNx, and SiO2 intermediate layers , 2013, Journal of Materials Science.

[18]  J. Jiménez,et al.  Revealing oxidation kinetics of dielectric-embedded Ag nanoparticles via in situ optical microspectroscopy , 2012 .

[19]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[20]  S. Prokes,et al.  The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles , 2010, Nanotechnology.

[21]  P. Jain,et al.  Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. , 2008, Nano letters.

[22]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.

[23]  Xiaodong Zhou,et al.  Surface plasmon-enhanced light emission using silver nanoparticles embedded in ZnO , 2010 .

[24]  Albano Cavaleiro,et al.  Nanoscale color control of TiO2 films with embedded Au nanoparticles , 2010 .

[25]  J. Popp,et al.  The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? , 2012, Angewandte Chemie.

[26]  Norbert Jahr,et al.  Molecular plasmonics: light meets molecules at the nanoscale , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  G. V. Ramesh,et al.  Polymer thin films embedded with in situ grown metal nanoparticles. , 2009, Chemical Society reviews.

[28]  H. Siedentopf,et al.  Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser , 1902 .

[29]  E. Wang,et al.  Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors , 2011 .

[30]  A. Pal,et al.  Surface plasmon resonance in nanocrystalline silver particles embedded in SiO2 matrix , 2002 .

[31]  M. Hillenkamp,et al.  Instability of Ag nanoparticles in SiO2 at ambient conditions , 2007 .

[32]  S. H. Lim,et al.  Light scattering into silicon-on-insulator waveguide modes by random and periodic gold nanodot arrays , 2009 .

[33]  M. Grimaldi,et al.  Self-organized patterned arrays of Au and Ag nanoparticles by thickness-dependent dewetting of template-confined films , 2014, Journal of Materials Science.

[34]  Carl V. Thompson,et al.  Solid-State Dewetting of Thin Films , 2012 .

[35]  C. Granqvist,et al.  TiO2/Au/TiO2 multilayer thin films: Novel metal-based transparent conductors for electrochromic devices , 2009 .

[36]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[37]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[38]  Thin-Film Silicon Solar Cells Using Back Reflector with Embedded Metal Nanoparticles , 2010 .

[39]  T. Pertsch,et al.  Optical resonances of self-organized monocrystalline Au nanoparticles embedded in SrTiO_3 matrix , 2011 .

[40]  F. Ruffino,et al.  Microstructure of Au nanoclusters formed in and on SiO2 , 2008 .

[41]  J. Dellith,et al.  YBa2Cu3O7−δ matrix-induced in situ growth of plasmonic Au nanoparticles for biological sensor devices , 2012, Journal of Nanoparticle Research.

[42]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[43]  Heinz-Detlef Kronfeldt,et al.  Naturally grown Ag nanoparticles on quartz substrates as SERS substrate excited by a 488 nm diode laser system for SERDS , 2012 .

[44]  J. Jiménez,et al.  Oxidation kinetics of plasmonic Ag particles in SiO2 nanofilms: Interlinking particle size to atmosphere–film–substrate system properties , 2013 .

[45]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[46]  Norbert Kaiser,et al.  Review of the fundamentals of thin-film growth. , 2002, Applied optics.

[47]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[48]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[49]  M. Grimaldi,et al.  Template-confined dewetting of Au and Ag nanoscale films on mica substrate , 2013 .

[50]  L. Olivi,et al.  Characterization of two dimensional self-organized Au nanoparticles embedded in Si3N4 , 2010 .