Finite-Element Model-Based Fault Prognosis on Key Components of the Reciprocating Compressor
暂无分享,去创建一个
The reciprocating compressor has become one of the most important equipments in petroleum and chemical industry. Study on vibration of the reciprocating compressor has a great significance to monitor the safety and reliability of the compressor. But it’s very difficult to predict the compressor and achieve the desired goal due to the complicated structure and operational aspect of the compressor. Experimental solution is expensive and time consuming. Therefore, finite element analysis (FEA) method is proposed to predict and locate the breakage of several key components on reciprocating compressor in compressor station. Non-destructive fault diagnosis and troubleshooting of the compressor can be achieved by application of FEA. The reasonable and simplified 3D model of the reciprocating compressor, which is validated with the actual prototype, is built by a CAD drawing software-SolidWorks. Then the ANSYS FE model is created by importing the 3D model into a FEA software-ANSYS. The ANSYS FE model can be used for stress analysis as well as intrinsic property analysis of the structural components. In this paper there are several ANSYS FE models of key components presented, including crankshaft, connecting-rod, crosshead and air valve. Then FEA method is applied to the fault localization of those components. According to the simulation results, the sites vulnerable to failure can be fixed on key components. The conclusions are consistent with the problems during the normal operation. Therefore, FEA is an effective and prospective method on fault prognosis of the reciprocating compressor.Copyright © 2010 by ASME