A categorification of the colored Jones polynomial at a root of unity

There is a p-differential on the triply-graded Khovanov–Rozansky homology of knots and links over a field of positive characteristic p that gives rise to an invariant in the homotopy category finite-dimensional p-complexes. A differential on triply-graded homology discovered by Cautis is compatible with the p-differential structure. As a consequence we get a categorification of the colored Jones polynomial evaluated at a 2pth root of unity.

[1]  A diagrammatic approach to categorification of quantum groups II , 2009 .

[2]  C. Vafa,et al.  BPS spectra and 3-manifold invariants , 2017, Journal of Knot Theory and Its Ramifications.

[3]  A. Mellit,et al.  Torus link homology , 2019, 1909.00418.

[4]  M. Mackaay,et al.  THE 1,2-COLOURED HOMFLY-PT LINK HOMOLOGY , 2008, 0809.0193.

[5]  Matthew Hogancamp A polynomial action on colored sl(2) link homology , 2014, 1405.2574.

[6]  Evgeny Gorsky,et al.  On Stable Khovanov Homology of Torus Knots , 2012, Exp. Math..

[7]  Four‐dimensional topological quantum field theory, Hopf categories, and the canonical bases , 1994, hep-th/9405183.

[8]  Richard G. Larson,et al.  An Associative Orthogonal Bilinear Form for Hopf Algebras , 1969 .

[9]  M. Khovanov Categorifications of the colored Jones polynomial , 2003, math/0302060.

[10]  Igor Frenkel,et al.  A Categorification of the Jones Polynomial , 2008 .

[11]  B. Webster,et al.  Knot Invariants and Higher Representation Theory , 2013, 1309.3796.

[12]  Geordie Williamson Singular Soergel bimodules , 2010, 1010.1283.

[13]  C. Stroppel,et al.  A categorification of finite-dimensional irreducible representations of quantum sl(2) and their tensor products , 2005, math/0511467.

[14]  M. Khovanov,et al.  An approach to categorification of some small quantum groups II , 2012, 1208.0616.

[15]  You Qi,et al.  A categorification of the Burau representation at prime roots of unity , 2013, 1312.7692.

[16]  Hopfological algebra and categorification at a root of unity: The first steps , 2005, math/0509083.

[17]  Mikhail Khovanov,et al.  Triply-graded link homology and Hochschild homology of Soergel bimodules , 2005, math/0510265.

[18]  Matthew Hogancamp Khovanov-Rozansky homology and higher Catalan sequences , 2017, 1704.01562.

[19]  G. Williamson,et al.  A geometric model for Hochschild homology of Soergel bimodules , 2007, 0707.2003.

[20]  M. Khovanov,et al.  Positive half of the Witt algebra acts on triply graded link homology , 2013, 1305.1642.

[21]  Dror Bar-Natan,et al.  Khovanov's homology for tangles and cobordisms , 2004, math/0410495.

[22]  Lev Rozansky,et al.  An infinite torus braid yields a categorified Jones-Wenzl projector , 2010, 1005.3266.

[23]  On some $p$-differential graded link homologies , 2020, 2009.06498.

[24]  R. Rouquier Khovanov-Rozansky homology and 2-braid groups , 2012, 1203.5065.

[25]  Ben Elias,et al.  A categorification of quantum sl(2) at prime roots of unity , 2015, 1503.05114.

[26]  You Qi,et al.  p-DG cyclotomic nilHecke algebras II , 2018, 1811.04372.

[27]  R. Rouquier 2-Kac-Moody algebras , 2008, 0812.5023.

[28]  You Qi Hopfological algebra , 2012, Compositio Mathematica.

[29]  E. Wagner,et al.  Symmetric Khovanov-Rozansky link homologies , 2018, Journal de l’École polytechnique — Mathématiques.

[30]  C. Stroppel,et al.  Categorifying fractional Euler characteristics, Jones–Wenzl projectors and 3j-symbols , 2012 .

[31]  David E. V. Rose,et al.  Annular Evaluation and Link Homology , 2018, 1802.04131.

[32]  Vyacheslav Krushkal,et al.  Categorification of the Jones-Wenzl Projectors , 2010, 1005.5117.

[33]  Ben Elias,et al.  On the computation of torus link homology , 2016, Compositio Mathematica.

[34]  M. Khovanov,et al.  A Categorification of the Temperley-Lieb Algebra and Schur Quotients of U(sl2) via Projective and , 2000 .

[35]  Sabin Cautis Clasp technology to knot homology via the affine Grassmannian , 2012, 1207.2074.

[36]  Sabin Cautis Remarks on coloured triply graded link invariants , 2016, 1611.09924.

[37]  D. Tubbenhauer,et al.  Functoriality of colored link homologies , 2017, Proceedings of the London Mathematical Society.

[38]  S. Wehrli,et al.  Categorification of the Colored Jones Polynomial and Rasmussen Invariant of Links , 2005, Canadian Journal of Mathematics.

[39]  Joshua Sussan,et al.  A Lie theoretic categorification of the coloured Jones polynomial , 2021, Journal of Pure and Applied Algebra.

[40]  Categorifying Hecke algebras at prime roots of unity, part I , 2020, 2005.03128.