Physics of carbon nanotube electronic devices

Carbon nanotubes (CNTs) are amongst the most explored one-dimensional nanostructures and have attracted tremendous interest from fundamental science and technological perspectives. Albeit topologically simple, they exhibit a rich variety of intriguing electronic properties, such as metallic and semiconducting behaviour. Furthermore, these structures are atomically precise, meaning that each carbon atom is still three-fold coordinated without any dangling bonds. CNTs have been used in many laboratories to build prototype nanodevices. These devices include metallic wires, field-effect transistors, electromechanical sensors and displays. They potentially form the basis of future all-carbon electronics.This review deals with the building blocks of understanding the device physics of CNT-based nanodevices. There are many features that make CNTs different from traditional materials, including chirality-dependent electronic properties, the one-dimensional nature of electrostatic screening and the presence of several direct bandgaps. Understanding these novel properties and their impact on devices is crucial in the development and evolution of CNT applications.

[1]  C. Adessi,et al.  Theoretical study of field emission by single-wall carbon nanotubes , 2000 .

[2]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 2000, Physical review letters.

[3]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[4]  J. Mintmire,et al.  Metallic and semiconducting narrow carbon nanotubes , 2003 .

[5]  M. Anantram Which nanowire couples better electrically to a metal contact: Armchair or zigzag nanotube? , 2001, cond-mat/0102366.

[6]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[7]  Iijima,et al.  Heterostructures of single-walled carbon nanotubes and carbide nanorods , 1999, Science.

[8]  J. U. Lee,et al.  Carbon nanotube p-n junction diodes , 2004 .

[9]  P L McEuen,et al.  Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. , 2004, Physical review letters.

[10]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[11]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[12]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[13]  S. Ciraci,et al.  Variable and reversible quantum structures on a single carbon nanotube , 2000, cond-mat/0011309.

[14]  Marco Buongiorno Nardelli,et al.  Mechanical deformations and coherent transport in carbon nanotubes , 1999 .

[15]  Ray H. Baughman,et al.  Mechanical and electromechanical coupling in carbon nanotube distortions , 2003 .

[16]  S. Krishnan,et al.  Electron transport through metal-multiwall carbon nanotube interfaces , 2004, IEEE Transactions on Nanotechnology.

[17]  G. Stix Nanotubes in the clean room. , 2005, Scientific American.

[18]  A J Pérez-Jiménez,et al.  First-principles phase-coherent transport in metallic nanotubes with realistic contacts. , 2003, Physical review letters.

[19]  Klaus Kern,et al.  Scanning field emission from patterned carbon nanotube films , 2000 .

[20]  Current-carrying capacity of carbon nanotubes , 1999, cond-mat/9912467.

[21]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[22]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[23]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[24]  M. P. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1999 .

[25]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[26]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[27]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[28]  Imad Arfaoui,et al.  A fully sealed luminescent tube based on carbon nanotube field emission , 2004, Microelectron. J..

[29]  Otto Zhou,et al.  Stationary scanning x-ray source based on carbon nanotube field emitters , 2005 .

[30]  Cohen,et al.  Defects, quasibound states, and quantum conductance in metallic carbon nanotubes , 2000, Physical review letters.

[31]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[32]  Leonard,et al.  Role of fermi-level pinning in nanotube schottky diodes , 2000, Physical review letters.

[33]  M. Kaiser,et al.  Characterization of the field emission properties of individual thin carbon nanotubes , 2004 .

[34]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[35]  S. Ciraci,et al.  Reversible band-gap engineering in carbon nanotubes by radial deformation , 2002 .

[36]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[37]  P. Burke,et al.  Microwave transport in metallic single-walled carbon nanotubes. , 2005, Nano letters.

[38]  L. Roschier,et al.  Multiwalled carbon nanotube: Luttinger versus fermi liquid , 2001 .

[39]  Phaedon Avouris,et al.  Mobile ambipolar domain in carbon-nanotube infrared emitters. , 2004, Physical review letters.

[40]  Robert P. H. Chang,et al.  A nanotube-based field-emission flat panel display , 1998 .

[41]  P. Avouris,et al.  Photoconductivity of Single Carbon Nanotubes , 2003 .

[42]  Markus Brink,et al.  Tuning carbon nanotube band gaps with strain. , 2003, Physical review letters.

[43]  Jerry Tersoff,et al.  Novel Length Scales in Nanotube Devices , 1999 .

[44]  S. Datta,et al.  Transport effects on signal propagation in quantum wires , 2005, IEEE Transactions on Electron Devices.

[45]  S. Louie,et al.  Possible explanation for the conductance of a single quantum unit in metallic carbon nanotubes , 1999 .

[46]  P. Burke Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes , 2002 .

[47]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[48]  Avik W. Ghosh,et al.  Temperature Dependence of the Conductance of Multiwalled Carbon Nanotubes , 2001 .

[49]  C. Journet,et al.  Tuning of nanotube mechanical resonances by electric field pulling. , 2002, Physical review letters.

[50]  Yong‐Hyun Kim,et al.  Band-gap modification by radial deformation in carbon nanotubes , 1999 .

[51]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[52]  Madhu Menon,et al.  Various bonding configurations of transition-metal atoms on carbon nanotubes: Their effect on contact resistance , 2000 .

[53]  S. Louie,et al.  Quantum conductance of multiwall carbon nanotubes , 2002 .

[54]  J. C. Tsang,et al.  Electrically Induced Optical Emission from a Carbon Nanotube FET , 2003, Science.

[55]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[56]  P. Ajayan,et al.  Electronic structure and localized states at carbon nanotube tips , 1997 .

[57]  Yi Liu Ab initio study of Ti-contacted single-walled carbon nanotube , 2003 .

[58]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[59]  R. Superfine,et al.  Tunable resistance of a carbon nanotube-graphite interface. , 2000, Science.

[60]  Christian Klinke,et al.  Field emission of individual carbon nanotubes in the scanning electron microscope. , 2002, Physical review letters.

[61]  L. Forró,et al.  Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism , 1999 .

[62]  Aaron Stein,et al.  Hot Carrier Electroluminescence from a Single Carbon Nanotube , 2004 .

[63]  R. Car,et al.  Electronic structure at carbon nanotube tips , 1999 .

[64]  Otto Zhou,et al.  Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode , 2002 .

[65]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[66]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[67]  M. P. Anantram,et al.  Conductance of carbon nanotubes with disorder: A numerical study , 1998 .

[68]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[69]  B. Chalamala,et al.  Current saturation mechanisms in carbon nanotube field emitters , 2000 .

[70]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[71]  F. Léonard,et al.  Robustness of nanotube electronic transport to conformational deformations , 2005 .

[72]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[73]  H. Sugie,et al.  Carbon nanotubes as electron source in an x-ray tube , 2001 .

[74]  B. Babic,et al.  Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes , 2003, cond-mat/0307252.

[75]  Alex Kleiner,et al.  Band gaps of primary metallic carbon nanotubes , 2000, cond-mat/0007244.

[76]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[77]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[78]  S. Paulson,et al.  In situ resistance measurements of strained carbon nanotubes , 1999, cond-mat/9905304.

[79]  Franco Cacialli,et al.  Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes , 1999 .

[80]  C. Berger,et al.  Room Temperature Ballistic Conduction in Carbon Nanotubes , 2002, cond-mat/0211515.

[81]  Quanshun Li,et al.  Current saturation in multiwalled carbon nanotubes by large bias , 2004 .

[82]  Elton Graugnard,et al.  Electron emission and structural characterization of a rope of single-walled carbon nanotubes , 2000 .

[83]  A. Charlier,et al.  Uniaxial-stress effects on the electronic properties of carbon nanotubes , 1997 .

[84]  François Léonard,et al.  Multiple functionality in nanotube transistors. , 2002, Physical review letters.

[85]  M. Anantram,et al.  Effect of scattering and contacts on current and electrostatics in carbon nanotubes , 2005, cond-mat/0503769.

[86]  Kong,et al.  Controllable reversibility of an sp(2) to sp(3) transition of a single wall nanotube under the manipulation of an AFM tip: A nanoscale electromechanical switch? , 2000, Physical review letters.

[87]  Tsuneya Ando,et al.  Impurity Scattering in Carbon Nanotubes Absence of Back Scattering , 1998 .

[88]  J. Mintmire,et al.  Fundamental properties of single-wall carbon nanotubes. , 2005, The journal of physical chemistry. B.

[89]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[90]  C. Gómez-Navarro,et al.  Radial Electromechanical Properties of Carbon Nanotubes , 2004 .

[91]  John W. Mintmire,et al.  Universal Density of States for Carbon Nanotubes , 1998 .

[92]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[93]  P. McEuen,et al.  Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes , 2003, cond-mat/0309641.

[94]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[95]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[96]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[97]  G. V. Torgashov,et al.  Electron field emission from nanofilament carbon films , 1995 .

[98]  Guo,et al.  Dynamic conductance of carbon nanotubes , 2000, Physical Review Letters.

[99]  Leonard,et al.  Negative differential resistance in nanotube devices , 2000, Physical review letters.

[100]  F. J. Garcia-Vidal,et al.  Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime , 2005, Nature materials.

[101]  Satoru Suzuki,et al.  Work functions and valence band states of pristine and Cs-intercalated single-walled carbon nanotube bundles , 2000 .

[102]  Amitesh Maiti,et al.  Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. , 2002, Physical review letters.

[103]  S. Datta,et al.  Coupling of Carbon Nanotubes to Metallic Contacts , 1999, cond-mat/9907357.

[104]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[105]  P. McEuen,et al.  A tunable carbon nanotube electromechanical oscillator , 2004, Nature.