Vibrational analysis from linear response theory

[1]  M. Parrinello,et al.  A novel implicit Newton–Raphson geometry optimization method for density functional theory calculations , 2001 .

[2]  Daniel Sebastiani,et al.  Generalized variational density functional perturbation theory , 2000 .

[3]  T. D. Fridgen,et al.  Electron bombardment matrix isolation of Rg/Rg′/methanol mixtures (Rg= Ar, Kr, Xe): Fourier-transform infrared characterization of the proton-bound dimers Kr2H+, Xe2H+, (ArHKr)+ and (ArHXe)+ in Ar matrices and (KrHXe)+ and Xe2H+ in Kr matrices , 1998 .

[4]  T. D. Fridgen,et al.  Density functional theory study of the proton-bound rare-gas dimers Rg2H+ and (RgHRg′)+ (Rg=Ar, Kr, Xe): Interpretation of experimental matrix isolation infrared data , 1998 .

[5]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[6]  V. Heine,et al.  Origin of the negative thermal expansion in and , 1996 .

[7]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Sotiris S. Xantheas,et al.  AB INITIO STUDIES OF CYCLIC WATER CLUSTERS (H2O)N, N=1-6. III: COMPARISON OF DENSITY FUNCTIONAL WITH MP2 RESULTS , 1995 .

[9]  Lin-wang Wang,et al.  Solving Schrödinger’s equation around a desired energy: Application to silicon quantum dots , 1994 .

[10]  Henrik Kunttu,et al.  Photogeneration of ions via delocalized charge transfer states. I. Xe2H+ and Xe2D+ in solid Xe , 1992 .

[11]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[12]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[13]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[14]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[15]  Testa,et al.  Elastic constants of crystals from linear-response theory. , 1987, Physical review letters.

[16]  John S. Muenter,et al.  THE STRUCTURE OF WATER DIMER FROM MOLECULAR BEAM ELECTRIC RESONANCE SPECTROSCOPY: PARTIALLY DEUTERATED DIMERS , 1977 .

[17]  V. Bondybey,et al.  Infrared Absorptions of Interstitial Hydrogen Atoms in Solid Argon and Krypton , 1972 .

[18]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[19]  M. Pettersson,et al.  The proton-bound rare gas compounds (RgHRg′)+ (Rg=Ar, Kr, Xe)—a computational approach , 1999 .

[20]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[21]  G. Golub Matrix computations , 1983 .

[22]  Richard M. Martin,et al.  Microscopic theory of force constants in the adiabatic approximation , 1970 .