Minors in graphs of large ϴr-girth

For every $r \in \mathbb{N}$, let $\theta_r$ denote the graph with two vertices and $r$ parallel edges. The \emph{$\theta_r$-girth} of a graph $G$ is the minimum number of edges of a subgraph of $G$ that can be contracted to $\theta_r$. This notion generalizes the usual concept of girth which corresponds to the case~$r=2$. In {[Minors in graphs of large girth, {\em Random Structures \& Algorithms}, 22(2):213--225, 2003]}, Kuhn and Osthus showed that graphs of sufficiently large minimum degree contain clique-minors whose order is an exponential function of their girth. We extend this result for the case of $\theta_{r}$-girth and we show that the minimum degree can be replaced by some connectivity measurement. As an application of our results, we prove that, for every fixed $r$, graphs excluding as a minor the disjoint union of $k$ $\theta_{r}$'s have treewidth $O(k\cdot \log k)$.

[1]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[2]  Dimitrios M. Thilikos,et al.  Low Polynomial Exclusion of Planar Graph Patterns , 2013, J. Graph Theory.

[3]  Paul D. Seymour,et al.  Graph minors. X. Obstructions to tree-decomposition , 1991, J. Comb. Theory, Ser. B.

[4]  Julia Chuzhoy,et al.  Excluded Grid Theorem: Improved and Simplified , 2015, STOC.

[5]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[6]  Koichi Yamazaki,et al.  Isomorphism for Graphs of Bounded Distance Width , 1997, CIAC.

[7]  Rudolf Halin,et al.  Tree-partitions of infinite graphs , 1991, Discret. Math..

[8]  B. Mohar,et al.  Graph Minors , 2009 .

[9]  Jan van Leeuwen,et al.  On Interval Routing Schemes and Treewidth , 1995, Inf. Comput..

[10]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  Carsten Thomassen,et al.  Highly Connected Sets and the Excluded Grid Theorem , 1999, J. Comb. Theory, Ser. B.

[12]  Etienne Birmelé,et al.  Brambles, Prisms and Grids , 2006 .

[13]  Daniela Kühn,et al.  Minors in graphs of large girth , 2003, Random Struct. Algorithms.

[14]  Daniela Kühn,et al.  Complete Minors In Ks,s-Free Graphs , 2004, Comb..

[15]  Klas Markström,et al.  Complete Minors in Cubic Graphs with few short Cycles and Random Cubic Graphs , 2004, Ars Comb..

[16]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[17]  Daniela Kühn,et al.  Minors in random regular graphs , 2008, Random Struct. Algorithms.

[18]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[19]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[20]  David R. Wood,et al.  Complete graph minors and the graph minor structure theorem , 2013, J. Comb. Theory, Ser. B.

[21]  Chandra Chekuri,et al.  Large-treewidth graph decompositions and applications , 2013, STOC '13.

[22]  Bogdan Oporowski,et al.  On tree-partitions of graphs , 1996, Discret. Math..

[23]  Michael Stiebitz Decomposing graphs under degree constraints , 1996, J. Graph Theory.

[24]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[25]  Bruce A. Reed,et al.  A Linear-Time Algorithm for Finding a Complete Graph Minor in a Dense Graph , 2012, SIAM J. Discret. Math..

[26]  Bert Gerards,et al.  On the excluded minors for the matroids of branch-width k , 2003, J. Comb. Theory, Ser. B.

[27]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[28]  Illya V. Hicks,et al.  The branchwidth of graphs and their cycle matroids , 2007, J. Comb. Theory, Ser. B.

[29]  Chandra Chekuri,et al.  Polynomial bounds for the grid-minor theorem , 2013, J. ACM.

[30]  Leonidas S. Pitsoulis,et al.  Topics in Matroid Theory , 2013 .

[31]  James G. Oxley,et al.  Matroid theory , 1992 .

[32]  Detlef Seese,et al.  Tree-partite graphs and the complexity of algorithms , 1985, FCT.

[33]  Robert Elsässer,et al.  New spectral lower bounds on the bisection width of graphs , 2000, Theor. Comput. Sci..

[34]  C. R. Subramanian,et al.  Girth and treewidth , 2005, J. Comb. Theory, Ser. B.

[35]  Fedor V. Fomin,et al.  Quadratic Upper Bounds on the Erdős-Pósa Property for a Generalization of Packing and Covering Cycles , 2013, J. Graph Theory.

[36]  Koichi Yamazaki,et al.  Isomorphism for Graphs of Bounded Distance Width , 1997, Algorithmica.