An efficient nonsymmetric Lanczos method on parallel vector computers

[1]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[2]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[3]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[4]  Axel Ruhe The two-sided arnoldi algorithm for nonsymmetric eigenvalue problems , 1983 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  Yousef Saad Partial Eigensolutions of Large Nonsymmetric Matrices. , 1985 .

[7]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[8]  W. Daniel Hillis,et al.  Data parallel algorithms , 1986, CACM.

[9]  A. K. Dave,et al.  Sparse matrix calculations on the CRAY-2 , 1987, Parallel Comput..

[10]  Zarka Cvetanovic,et al.  The Effects of Problem Partitioning, Allocation, and Granularity on the Performance of Multiple-Processor Systems , 1987, IEEE Transactions on Computers.

[11]  P. Saylor,et al.  Leapfrog variants of iterative methods for linear algebraic equations , 1988 .

[12]  Anthony T. Chronopoulos,et al.  On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..

[13]  Y. Saad,et al.  Krylov Subspace Methods on Supercomputers , 1989 .

[14]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[15]  Anthony T. Chronopoulos,et al.  A class of Lanczos-like algorithms implemented on parallel computers , 1991, Parallel Comput..