Metallochaperones Regulate Intracellular Copper Levels

Copper (Cu) is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

[1]  Thijs J G Ettema,et al.  TRASH: a novel metal-binding domain predicted to be involved in heavy-metal sensing, trafficking and resistance. , 2003, Trends in biochemical sciences.

[2]  C. Wijmenga,et al.  Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes , 2007, Journal of Medical Genetics.

[3]  Edda Klipp,et al.  Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation , 2010, Bioinform..

[4]  A. Maass,et al.  A mathematical model for copper homeostasis in Enterococcus hirae. , 2006, Mathematical biosciences.

[5]  J. Mercer,et al.  Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. , 2007, Archives of biochemistry and biophysics.

[6]  P. Gruss,et al.  The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Solioz,et al.  The Enterococcus hirae paradigm of copper homeostasis: Copper chaperone turnover, interactions, and transactions , 2003, Biometals.

[8]  S. Copley,et al.  Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes , 2002, Genome Biology.

[9]  I. Sandoval,et al.  Molecular mechanisms of copper homeostasis. , 2009, Frontiers in bioscience.

[10]  U. Shinde,et al.  Structural organization of human Cu-transporting ATPases: learning from building blocks , 2009, JBIC Journal of Biological Inorganic Chemistry.

[11]  J. Imlay,et al.  The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity , 2009, Proceedings of the National Academy of Sciences.

[12]  I. Bertini,et al.  Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. , 2002, Genome research.

[13]  D. Huffman,et al.  Function, structure, and mechanism of intracellular copper trafficking proteins. , 2001, Annual review of biochemistry.

[14]  I. Bertini,et al.  Cyanobacterial metallochaperone inhibits deleterious side reactions of copper , 2011, Proceedings of the National Academy of Sciences.

[15]  Michaela Yanku,et al.  Identification and Characterization of gshA, a Gene Encoding the Glutamate-Cysteine Ligase in the Halophilic Archaeon Haloferax volcanii , 2009, Journal of bacteriology.

[16]  M. Solioz,et al.  Response of Gram-positive bacteria to copper stress , 2009, JBIC Journal of Biological Inorganic Chemistry.

[17]  T. O’Halloran,et al.  Structure and chemistry of the copper chaperone proteins. , 2000, Current opinion in chemical biology.

[18]  S. DasSarma,et al.  Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker , 2000, Molecular microbiology.

[19]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[20]  L. Wackett,et al.  MINIREVIEW Microbial Genomics and the Periodic Table , 2004 .

[21]  Christopher E. Jones,et al.  Intracellular copper routing: the role of copper chaperones. , 2000, Trends in biochemical sciences.

[22]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 2003, FEMS microbiology reviews.

[23]  Thomas V. O'Halloran,et al.  Metallochaperones, an Intracellular Shuttle Service for Metal Ions* , 2000, The Journal of Biological Chemistry.

[24]  Aleksandar Cvetkovic,et al.  Microbial metalloproteomes are largely uncharacterized , 2010, Nature.

[25]  J. Gitlin,et al.  Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[27]  T. O’Halloran,et al.  Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. , 1999, Science.

[28]  T. Hwa,et al.  Growth Rate-Dependent Global Effects on Gene Expression in Bacteria , 2009, Cell.

[29]  E. Bini,et al.  Response to excess copper in the hyperthermophile Sulfolobus solfataricus strain 98/2. , 2009, Biochemical and biophysical research communications.

[30]  D. Nag,et al.  Wilson's disease: an update. , 1995, The Journal of the Association of Physicians of India.

[31]  J. H. Hofmeyr,et al.  The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models , 1997, Comput. Appl. Biosci..

[32]  S. Abdel‐Ghany,et al.  Copper homeostasis. , 2009, The New phytologist.

[33]  Julia Roberts,et al.  Identification of a copper-binding metallothionein in pathogenic mycobacteria. , 2008, Nature chemical biology.

[34]  D. Winge,et al.  Copper metallochaperones. , 2010, Annual review of biochemistry.

[35]  Vitali A. Likhoshvai,et al.  Generalized Hill Function Method for Modeling Molecular Processes , 2007, J. Bioinform. Comput. Biol..

[36]  Min Pan,et al.  A systems view of haloarchaeal strategies to withstand stress from transition metals. , 2006, Genome research.

[37]  David McMillen,et al.  Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks , 2004, BMC Bioinformatics.

[38]  J. Mercer,et al.  The molecular basis of copper homeostasis copper-related disorders. , 2002, DNA and cell biology.

[39]  S. Packman,et al.  Cellular copper transport. , 1995, Annual review of nutrition.

[40]  Steven D. P. Moore,et al.  Copper Transporting P-Type ATPases and Human Disease , 2002, Journal of bioenergetics and biomembranes.

[41]  A. Hubbard,et al.  Copper handling machinery of the brain. , 2010, Metallomics : integrated biometal science.

[42]  Dianne Ford,et al.  Metalloproteins and metal sensing , 2009, Nature.

[43]  J. Argüello,et al.  Mechanism of Cu+-transporting ATPases: Soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites , 2008, Proceedings of the National Academy of Sciences.

[44]  Shin Lin,et al.  Metal ion chaperone function of the soluble Cu(I) receptor Atx1. , 1997, Science.

[45]  Michael Y. Galperin,et al.  Copper chaperones in bacteria: association with copper-transporting ATPases. , 2000, Trends in biochemical sciences.