Strong light-matter coupling in pentacene thin films on plasmonic arrays.

Utilizing strong light-matter coupling is an elegant and powerful way to modify the energy landscapes of excited states of organic semiconductors. Consequently, the chemical and photophysical properties of these organic semiconductors can be influenced without the need of chemical modification but simply by implementing them in optical microcavities. This has so far mostly been shown in Fabry-Pérot cavities and with organic single crystals or diluted molecules in a host matrix. Here, we demonstrate strong, simultaneous coupling of the two Davydov transitions in polycrystalline pentacene thin films to surface lattice resonances supported by open cavities made of silver nanoparticle arrays. Such thin films are more easily fabricated and, together with the open architecture, more suitable for device applications.

[1]  F. García-Vidal,et al.  Not dark yet for strong light-matter coupling to accelerate singlet fission dynamics , 2022, Cell reports. Physical science.

[2]  R. Mitrić,et al.  The Role of Molecular Arrangement on the Strongly Coupled Exciton–Plasmon Polariton Dispersion in Metal–Organic Hybrid Structures , 2022, The Journal of Physical Chemistry C.

[3]  I. Rasskazov,et al.  Collective lattice resonances: Plasmonics and beyond , 2021 .

[4]  P. Bai,et al.  Evolutionary optimization of light-matter coupling in open plasmonic cavities. , 2021, The Journal of chemical physics.

[5]  S. Mukamel,et al.  Optical-Cavity Manipulation of Conical Intersections and Singlet Fission in Pentacene Dimers. , 2021, The journal of physical chemistry letters.

[6]  J. Gómez Rivas,et al.  Light–Matter Coupling Strength Controlled by the Orientation of Organic Crystals in Plasmonic Cavities , 2020 .

[7]  M. Sfeir,et al.  The Role of Long-Lived Excitons in the Dynamics of Strongly Coupled Molecular Polaritons , 2020, 2002.09747.

[8]  S. Forrest,et al.  Modifying the Spectral Weights of Vibronic Transitions via Strong Coupling to Surface Plasmons , 2020 .

[9]  Shota Takahashi,et al.  Singlet fission of amorphous rubrene modulated by polariton formation. , 2019, The Journal of chemical physics.

[10]  J. Gómez Rivas,et al.  Enhanced Delayed Fluorescence in Tetracene Crystals by Strong Light‐Matter Coupling , 2019, Advanced Functional Materials.

[11]  Pavlos G. Lagoudakis,et al.  A room-temperature organic polariton transistor , 2019, Nature Photonics.

[12]  X. Zhu,et al.  Triplet Pair States in Singlet Fission. , 2019, Chemical reviews.

[13]  Melissa K. Gish,et al.  Emerging Design Principles for Enhanced Solar Energy Utilization with Singlet Fission , 2019, The Journal of Physical Chemistry C.

[14]  O. N. Oliveira,et al.  Plasmonic Biosensing. , 2018, Chemical reviews.

[15]  Yuebing Zheng,et al.  Design and applications of lattice plasmon resonances , 2018, Nano Research.

[16]  V. Kravets,et al.  Plasmonic Surface Lattice Resonances: A Review of Properties and Applications , 2018, Chemical reviews.

[17]  D. Reichman,et al.  Vibronic exciton theory of singlet fission. III. How vibronic coupling and thermodynamics promote rapid triplet generation in pentacene crystals. , 2018, The Journal of chemical physics.

[18]  S. Kéna‐Cohen,et al.  Polariton-Assisted Singlet Fission in Acene Aggregates. , 2017, The journal of physical chemistry letters.

[19]  Niels van Hoof,et al.  Dispersion Anisotropy of Plasmon–Exciton–Polaritons in Lattices of Metallic Nanoparticles , 2017 .

[20]  Aaro I. Väkeväinen,et al.  The rich photonic world of plasmonic nanoparticle arrays , 2017 .

[21]  H. Luk,et al.  Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. , 2017, Journal of chemical theory and computation.

[22]  David Beljonne,et al.  Research data supporting: The Entangled Triplet Pair State in Acene and Heteroacene Materials , 2017 .

[23]  Daniele Sanvitto,et al.  The road towards polaritonic devices. , 2016, Nature materials.

[24]  A. Moilanen,et al.  Lasing in dark and bright modes of a finite-sized plasmonic lattice , 2016, Nature Communications.

[25]  J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[26]  C. Mirkin,et al.  Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures , 2016 .

[27]  George C Schatz,et al.  Real-time tunable lasing from plasmonic nanocavity arrays , 2015, Nature Communications.

[28]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[29]  Yi-Tao Long,et al.  Localized Surface Plasmon Resonance Based Nanobiosensors , 2014 .

[30]  R. Hoffmann,et al.  The low-lying electronic states of pentacene and their roles in singlet fission. , 2014, Journal of the American Chemical Society.

[31]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[32]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[33]  Bruno Ehrler,et al.  Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. , 2013, Accounts of chemical research.

[34]  S. Ha,et al.  Relative permittivity and Hubbard U of pentacene extracted from scanning tunneling microscopy studies of p-doped films , 2010 .

[35]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[36]  T. Ebbesen,et al.  Molecule-light complex: dynamics of hybrid molecule-surface plasmon states. , 2009, Angewandte Chemie.

[37]  Thomas H. Reilly,et al.  The Ultrafast Photophysics of Pentacene Coupled to Surface Plasmon Active Nanohole Films , 2009 .

[38]  Martin Huth,et al.  Determination of the crystal structure of substrate-induced pentacene polymorphs in fiber structured thin films. , 2007, Journal of the American Chemical Society.

[39]  F. Schreiber,et al.  Optical properties of pentacene and perfluoropentacene thin films. , 2007, The Journal of chemical physics.

[40]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[41]  S. Iannotta,et al.  Pentacene Thin Film Growth , 2004 .

[42]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[43]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[44]  Alex W Chin,et al.  Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. , 2016, Nature chemistry.

[45]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[46]  Josef Michl,et al.  Singlet fission. , 2010, Chemical reviews.