Homogenization Methods and Multiscale Modeling

The relatively recent increase in computational power available for mathematical modeling and simulation raises the possibility that modern numerical methods can play a significant role in the analysis of materials possessing heterogeneous microstructure. Ideally, in an attempt to reduce laboratory expense, one would like to make predictions of a new material's behavior by numerical simulations, with the primary goal being to accelerate the trial and error laboratory development of novel high performance materials. This fact, among others, has motivated the work that will be presented in this monograph. Keywords: micromechanics; effective properties; multiscale modeling

[1]  J. Oden,et al.  Analysis and adaptive modeling of highly heterogeneous elastic structures , 1997 .

[2]  Jacob Fish,et al.  An efficient multilevel solution scheme for large scale non-linear systems , 1995 .

[3]  R. V. D. Geijn,et al.  A fast solution method for three‐dimensional many‐particle problems of linear elasticity , 1998 .

[4]  Jacob Fish,et al.  Multiscale damage modelling for composite materials: theory and computational framework , 2001 .

[5]  Subra Suresh,et al.  An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites , 1991 .

[6]  Christian Huet,et al.  Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .

[7]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[8]  T. Zohdi Computational optimization of the vortex manufacturing of advanced materials , 2001 .

[9]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[10]  Somnath Ghosh,et al.  Adaptivity and convergence in the Voronoi cell finite element model for analyzing heterogeneous materials , 2000 .

[11]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[12]  Pierre Ladevèze,et al.  A modelling error estimator for dynamic structural model updating , 1998 .

[13]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[14]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[16]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[17]  J. Oden,et al.  Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials: Part II: a computational environment for adaptive modeling of heterogeneous elastic solids , 2001 .

[18]  Peter Wriggers,et al.  Computational micro-macro material testing , 2001 .

[19]  J. Tinsley Oden,et al.  Investigation of the interactions between the numerical and the modeling errors in the Homogenized Dirichlet Projection Method , 1998 .

[20]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[21]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[22]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[23]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[24]  Somnath Ghosh,et al.  A material based finite element analysis of heterogeneous media involving Dirichlet tessellations , 1993 .

[25]  James Clerk Maxwell,et al.  IV. On the dynamical theory of gases , 1868, Philosophical Transactions of the Royal Society of London.

[26]  Peter Wriggers,et al.  A domain decomposition method for bodies with heterogeneous microstructure basedon material regularization , 1999 .

[27]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[28]  Javier Segurado,et al.  A numerical approximation to the elastic properties of sphere-reinforced composites , 2002 .

[29]  T I Zohdi,et al.  Genetic design of solids possessing a random–particulate microstructure , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  M. Elices,et al.  Elastic properties of sphere-reinforced composites with a mesophase , 2000 .

[31]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[32]  Somnath Ghosh,et al.  A multi-level computational model for multi-scale damage analysis in composite and porous materials , 2001 .

[33]  J. Llorca 3.04 – Void Formation in Metal Matrix Composites , 2000 .

[34]  J. Llorca,et al.  Micromechanical modelling of deformation and failure in Ti-6al-4V/SiC composites , 2001 .

[35]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[36]  C. Huet,et al.  On the definition and experimental determination of effective constitutive equations for assimilating heterogeneous materials , 1984 .

[37]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[38]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media : II. Applications to isotropic dispersions , 1998 .

[39]  T. Zohdi Statistical ensemble error bounds for homogenized microheterogeneous solids , 2005 .

[40]  J. Llorca A numerical study of the mechanisms of cyclic strain hardening in metal-ceramic composites , 1994 .

[41]  Sia Nemat-Nasser,et al.  Averaging theorems in finite deformation plasticity , 1999 .

[42]  T. Zohdi Overall Solution-Difference Bounds on the Effects of Material Inhomogeneities , 2000 .

[43]  Somnath Ghosh,et al.  Multiple scale computational model for damage in composite materials , 1999 .

[44]  Mark S. Shephard,et al.  Automated modeling for complex woven mesostructures , 1999 .

[45]  Christian Huet,et al.  An integrated micromechanics and statistical continuum thermodynamics approach for studying the fracture behaviour of microcracked heterogeneous materials with delayed response , 1997 .

[46]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[47]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[48]  David Dureisseix,et al.  A micro / macro approach for parallel computing of heterogeneous structures , 2000 .

[49]  C. Huet,et al.  Universal conditions for assimilation of a heterogeneous material to an effective continuum , 1982 .

[50]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[51]  Jacob Fish,et al.  Generalized Aggregation Multilevel solver , 1997 .

[52]  Jacob Fish,et al.  Finite deformation plasticity for composite structures: Computational models and adaptive strategies , 1999 .

[53]  Peter Wriggers,et al.  Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .

[54]  Jacob Fish,et al.  Multiscale analytical sensitivity analysis for composite materials , 2001 .

[55]  Salvatore Torquato,et al.  Effective-medium approximation for composite media: Realizable single-scale dispersions , 2001 .

[56]  Owen Richmond,et al.  An experimental–computational approach to the investigation of damage evolution in discontinuously reinforced aluminum matrix composite , 1999 .

[57]  Somnath Ghosh,et al.  Particle fracture simulation in non-uniform microstructures of metal-matrix composites , 1998 .

[58]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[59]  J. Fish,et al.  A Dispersive Model for Wave Propagation in Periodic Heterogeneous Media Based on Homogenization With Multiple Spatial and Temporal Scales , 2001 .

[60]  J. Schröder,et al.  Computational homogenization analysis in finite plasticity Simulation of texture development in polycrystalline materials , 1999 .

[61]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[62]  J. Llorca,et al.  Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites , 1998 .

[63]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[64]  J. Oden,et al.  Adaptive hierarchical modeling of heterogeneous structures , 1999 .

[65]  S. Hazanov,et al.  On overall properties of elastic heterogeneous bodies smaller than the representative volume , 1995 .

[66]  Jacob Fish,et al.  Computational damage mechanics for composite materials based on mathematical homogenization , 1999 .

[67]  J. Llorca,et al.  A self-consistent approach to the elasto-plastic behaviour of two-phase materials including damage , 2000 .

[68]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[69]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[70]  Richard M. Christensen,et al.  A critical evaluation for a class of micro-mechanics models , 1990 .

[71]  Jacob Fish, Wen Chen Uniformly Valid Multiple Spatial-Temporal Scale Modeling for Wave Propagation in Heterogeneous Media , 2001 .

[72]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[73]  S. Torquato Random Heterogeneous Materials , 2002 .

[74]  L. Champaney,et al.  Large scale applications on parallel computers of a mixed domain decomposition method , 1997 .

[75]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[76]  Jacob Fish,et al.  Multiscale finite element method for a locally nonperiodic heterogeneous medium , 1993 .

[77]  Peter Wriggers,et al.  A method of substructuring large-scale computational micromechanical problems , 2001 .

[78]  N. J. Pagano,et al.  Revisiting the composite laminate problem with an adaptive multi-level computational model , 2001 .

[79]  Javier Segurado,et al.  On the accuracy of mean-field approaches to simulate the plastic deformation of composites , 2002 .

[80]  Mark S. Shephard,et al.  Computer-aided multiscale modeling tools for composite materials and structures , 1995 .

[81]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .