Interfacial carbon nanoplatelet formation by ion irradiation of graphene on iridium(111).

We expose epitaxial graphene (Gr) on Ir(111) to low-energy noble gas ion irradiation and investigate by scanning tunneling microscopy and atomistic simulations the behavior of C atoms detached from Gr due to ion impacts. Consistent with our density functional theory calculations, upon annealing Gr nanoplatelets nucleate at the Gr/Ir(111) interface from trapped C atoms initially displaced with momentum toward the substrate. Making use of the nanoplatelet formation phenomenon, we measure the trapping yield as a function of ion energy and species and compare the values to those obtained using molecular dynamics simulations. Thereby, complementary to the sputtering yield, the trapping yield is established as a quantity characterizing the response of supported 2D materials to ion exposure. Our findings shed light on the microscopic mechanisms of defect production in supported 2D materials under ion irradiation and pave the way toward precise control of such systems by ion beam engineering.

[1]  A. Krasheninnikov,et al.  Comment on "Interfacial carbon nanoplatelet formation by ion irradiation of graphene on iridium(111)". , 2015, ACS nano.

[2]  H. Cun,et al.  Ar implantation beneath graphene on Ru(0001): Nanotents and "can-opener" effect , 2015 .

[3]  H. Cun,et al.  Implantation length and thermal stability of interstitial ar atoms in boron nitride nanotents. , 2014, ACS nano.

[4]  M. Milun,et al.  The mechanism of caesium intercalation of graphene , 2013, Nature Communications.

[5]  P. Liljeroth,et al.  Structural manipulation of the graphene/metal-interface with Ar+ irradiation , 2013, 1310.1755.

[6]  A. Krasheninnikov,et al.  Strains induced by point defects in graphene on a metal. , 2013, Physical review letters.

[7]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[8]  A. Krasheninnikov,et al.  Ion impacts on graphene/Ir(111): interface channeling, vacancy funnels, and a nanomesh. , 2013, Nano letters.

[9]  H. Cun,et al.  Immobilizing individual atoms beneath a corrugated single layer of boron nitride. , 2013, Nano letters.

[10]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[11]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[12]  A. Seitsonen,et al.  Hexagonal boron nitride on transition metal surfaces , 2013, Theoretical Chemistry Accounts.

[13]  J. Keinonen,et al.  Ion‐Irradiation‐Induced Defects in Isotopically‐Labeled Two Layered Graphene: Enhanced In‐Situ Annealing of the Damage , 2013, Advanced materials.

[14]  Hongzheng Chen,et al.  Graphene-like two-dimensional materials. , 2013, Chemical reviews.

[15]  T. Michely,et al.  Oxygen intercalation under graphene on Ir(111): energetics, kinetics, and the role of graphene edges. , 2012, ACS nano.

[16]  T. Björkman van der Waals density functional for solids , 2012 .

[17]  A. Krasheninnikov,et al.  Ion irradiation tolerance of graphene as studied by atomistic simulations , 2012, 1205.1826.

[18]  A. Krasheninnikov,et al.  The Role of Stable and Mobile Carbon Adspecies in Copper- Promoted Graphene Growth , 2012 .

[19]  T. Michely,et al.  Interplay of wrinkles, strain, and lattice parameter in graphene on iridium. , 2012, Nano letters.

[20]  A. Keudell,et al.  X-ray photoelectron spectroscopy on implanted argon as a tool to follow local structural changes in thin films , 2011 .

[21]  P. Mallet,et al.  Electronic and structural characterization of divacancies in irradiated graphene , 2011, 1112.5598.

[22]  S. Blügel,et al.  Graphene on Ir(111): physisorption with chemical modulation. , 2011, Physical review letters.

[23]  P. Pou,et al.  Point defects on graphene on metals. , 2011, Physical review letters.

[24]  I. Monnet,et al.  Unzipping and folding of graphene by swift heavy ions , 2011 .

[25]  A. Bostwick,et al.  Growth from below: graphene bilayers on Ir(111). , 2011, ACS nano.

[26]  J. Robinson,et al.  Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils , 2010, 1012.4060.

[27]  A. Krasheninnikov,et al.  Ion and electron irradiation-induced effects in nanostructured materials , 2010 .

[28]  J. Keinonen,et al.  Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation , 2010 .

[29]  F. Guinea,et al.  Missing atom as a source of carbon magnetism. , 2010, Physical review letters.

[30]  T. Michely,et al.  In situ observation of stress relaxation in epitaxial graphene , 2009, 0906.0896.

[31]  T. Michely,et al.  CORRIGENDUM: Growth of graphene on Ir(111) Growth of graphene on Ir(111) , 2009 .

[32]  T. Michely,et al.  Growth of graphene on Ir(111) , 2009 .

[33]  P. Lambin,et al.  Tuning the electronic structure of graphene by ion irradiation , 2008, 0901.3021.

[34]  T. Michely,et al.  Structure of epitaxial graphene on Ir(111) , 2008 .

[35]  A. Krasheninnikov,et al.  Engineering of nanostructured carbon materials with electron or ion beams. , 2007, Nature materials.

[36]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[37]  T. Michely,et al.  From erosion to bombardment-induced growth on Ir(111) , 2003 .

[38]  Kai Nordlund,et al.  Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon , 2002 .

[39]  Donald W. Brenner,et al.  A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons , 2002 .

[40]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[41]  M. Caturla,et al.  Defect production in collision cascades in elemental semiconductors and fcc metals , 1998 .

[42]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[43]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Teichert,et al.  Adatom yields, sputtering yields, and damage patterns of single-ion impacts on Pt(111). , 1994, Physical review. B, Condensed matter.

[46]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[47]  S. Donnelly A thermal evolution study of the trapping and release of inert gases in nickel , 1978 .

[48]  P. Trucano,et al.  Structure of graphite by neutron diffraction , 1975, Nature.

[49]  W. Sachtler,et al.  Crystal face specificity of xenon adsorption on iridium field emitters , 1974 .