Phylogenomics of the genus Glycine sheds light on polyploid evolution and life-strategy transition

[1]  Jannice Friedman The Evolution of Annual and Perennial Plant Life Histories: Ecological Correlates and Genetic Mechanisms , 2020 .

[2]  J. Wendel,et al.  Homoeologous Exchanges, Segmental Allopolyploidy, and Polyploid Genome Evolution , 2020, Frontiers in Genetics.

[3]  M. Zhang,et al.  Pan-Genome of Wild and Cultivated Soybeans , 2020, Cell.

[4]  C. Kidner,et al.  The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous–Paleogene (K–Pg) Mass Extinction Event , 2020, Systematic biology.

[5]  M. Schatz,et al.  GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes , 2020, Nature Communications.

[6]  S. Henikoff,et al.  What makes a centromere? , 2020, Experimental cell research.

[7]  C. Kidner,et al.  Large‐scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near‐simultaneous evolutionary origin of all six subfamilies , 2019, The New phytologist.

[8]  K. Schneeberger,et al.  SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies , 2019, Genome Biology.

[9]  R. Varshney,et al.  Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement , 2019, Trends in plant science.

[10]  Shujun Ou,et al.  LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long terminal repeat retrotransposons , 2019, Mobile DNA.

[11]  Erez Lieberman Aiden,et al.  The genome sequence of segmental allotetraploid peanut Arachis hypogaea , 2019, Nature Genetics.

[12]  Tianzhen Zhang,et al.  Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton , 2019, Nature Genetics.

[13]  Claire Yik-Lok Chung,et al.  A reference-grade wild soybean genome , 2019, Nature Communications.

[14]  A. Paterson,et al.  Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants , 2019, Genome Biology.

[15]  C. Vincent,et al.  A regulatory circuit conferring varied flowering response to cold in annual and perennial plants , 2019, Science.

[16]  J. Doyle,et al.  Polyploidy, the Nucleotype, and Novelty: The Impact of Genome Doubling on the Biology of the Cell , 2019, International Journal of Plant Sciences.

[17]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[18]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[19]  Damon Lisch,et al.  The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. , 2018, Current opinion in genetics & development.

[20]  Zhaoqing Chu,et al.  Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus , 2018, The Plant journal : for cell and molecular biology.

[21]  C. K. Chan,et al.  Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus , 2018, Plant biotechnology journal.

[22]  Adam M. Phillippy,et al.  MUMmer4: A fast and versatile genome alignment system , 2018, PLoS Comput. Biol..

[23]  J. Doyle,et al.  Non-Additive Transcriptomic Responses to Inoculation with Rhizobia in a Young Allopolyploid Compared with Its Diploid Progenitors , 2017, Genes.

[24]  D. Lisch,et al.  Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants , 2017, Plant Cell.

[25]  Y. Hanzawa,et al.  Soybean domestication: the origin, genetic architecture and molecular bases. , 2017, The New phytologist.

[26]  Stephen A. Smith,et al.  The Past Sure Is Tense: On Interpreting Phylogenetic Divergence Time Estimates , 2017, bioRxiv.

[27]  Hao Wang,et al.  SINE_scan: an efficient tool to discover short interspersed nuclear elements (SINEs) in large-scale genomic datasets , 2016, Bioinform..

[28]  Jeffrey T Leek,et al.  Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown , 2016, Nature Protocols.

[29]  M. Schatz,et al.  Phased diploid genome assembly with single-molecule real-time sequencing , 2016, Nature Methods.

[30]  T. Slotte,et al.  Genomic legacies of the progenitors and the evolutionary consequences of allopolyploidy. , 2016, Current opinion in plant biology.

[31]  Jonathan F Wendel,et al.  The wondrous cycles of polyploidy in plants. , 2015, American journal of botany.

[32]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[33]  Hui Xiang,et al.  Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean , 2015, Nature Biotechnology.

[34]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[35]  D. Soltis,et al.  Nonadditive gene expression in polyploids. , 2014, Annual review of genetics.

[36]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[37]  J. Doyle,et al.  The wild side of a major crop: soybean's perennial cousins from Down Under. , 2014, American journal of botany.

[38]  Ruiqiang Li,et al.  De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits , 2014, Nature Biotechnology.

[39]  J. Grimwood,et al.  Complete Plastome Sequences from Glycine syndetika and Six Additional Perennial Wild Relatives of Soybean , 2014, G3: Genes, Genomes, Genetics.

[40]  Corinne Da Silva,et al.  Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome , 2014, Science.

[41]  Chunguang Du,et al.  HelitronScanner uncovers a large overlooked cache of Helitron transposons in many plant genomes , 2014, Proceedings of the National Academy of Sciences.

[42]  J. Doyle,et al.  Mining transcriptomic data to study the origins and evolution of a plant allopolyploid complex , 2014, PeerJ.

[43]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[44]  Dong Xie,et al.  BEAST 2: A Software Platform for Bayesian Evolutionary Analysis , 2014, PLoS Comput. Biol..

[45]  M. Chagoyen,et al.  Strigolactone Promotes Degradation of DWARF14, an α/β Hydrolase Essential for Strigolactone Signaling in Arabidopsis[W] , 2014, Plant Cell.

[46]  Carolyn J. Lawrence-Dill,et al.  MAKER-P: A Tool Kit for the Rapid Creation, Management, and Quality Control of Plant Genome Annotations1[W][OPEN] , 2013, Plant Physiology.

[47]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[48]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[49]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[50]  Gregory D May,et al.  A comparative transcriptomic study of an allotetraploid and its diploid progenitors illustrates the unique advantages and challenges of RNA-seq in plant species. , 2012, American journal of botany.

[51]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[52]  Vincent Miele,et al.  Ultra-fast sequence clustering from similarity networks with SiLiX , 2011, BMC Bioinformatics.

[53]  Gaurav Vaidya,et al.  SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information , 2011, Cladistics : the international journal of the Willi Hennig Society.

[54]  J. Doyle,et al.  A comparison of global, gene-specific, and relaxed clock methods in a comparative genomics framework: dating the polyploid history of soybean (Glycine max). , 2010, Systematic biology.

[55]  M. Suchard,et al.  Bayesian random local clocks, or one rate to rule them all , 2010, BMC Biology.

[56]  M. Suchard,et al.  Phylogeography takes a relaxed random walk in continuous space and time. , 2010, Molecular biology and evolution.

[57]  Jianxin Ma,et al.  Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. , 2010, The Plant journal : for cell and molecular biology.

[58]  S. Michaels,et al.  The Arabidopsis Paf1c Complex Component CDC73 Participates in the Modification of FLOWERING LOCUS C Chromatin1[C][W][OA] , 2010, Plant Physiology.

[59]  J. Doyle,et al.  Dating the origins of polyploidy events. , 2010, The New phytologist.

[60]  Lex E. Flagel,et al.  Homoeologous nonreciprocal recombination in polyploid cotton. , 2010, The New phytologist.

[61]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[62]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[63]  Shinjiro Yamaguchi,et al.  d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. , 2009, Plant & cell physiology.

[64]  S. Jackson,et al.  Molecular and Chromosomal Evidence for Allopolyploidy in Soybean1[OA] , 2009, Plant Physiology.

[65]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[66]  C. Vincent,et al.  PEP1 regulates perennial flowering in Arabis alpina , 2009, Nature.

[67]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[68]  M. Donoghue,et al.  Rates of Molecular Evolution Are Linked to Life History in Flowering Plants , 2008, Science.

[69]  Sònia Casillas,et al.  Standard and generalized McDonald–Kreitman test: a website to detect selection by comparing different classes of DNA sites , 2008, Nucleic Acids Res..

[70]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[71]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[72]  Jun Li,et al.  KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging , 2007, Genom. Proteom. Bioinform..

[73]  Keith Bradnam,et al.  CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes , 2007, Bioinform..

[74]  J. Bennetzen,et al.  Plant centromere organization: a dynamic structure with conserved functions. , 2007, Trends in genetics : TIG.

[75]  Randall L. Nelson,et al.  Impacts of genetic bottlenecks on soybean genome diversity , 2006, Proceedings of the National Academy of Sciences.

[76]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[77]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[78]  S. Jackson,et al.  Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. , 2005, Genome research.

[79]  W. Jin,et al.  Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  M. Wojciechowski,et al.  Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. , 2005, Systematic biology.

[81]  J. Jurka,et al.  Repbase Update, a database of eukaryotic repetitive elements , 2005, Cytogenetic and Genome Research.

[82]  Tatiana Tatusova,et al.  NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins , 2004, Nucleic Acids Res..

[83]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[84]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[85]  F. Blattner,et al.  Functional Rice Centromeres Are Marked by a Satellite Repeat and a Centromere-Specific Retrotransposon Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.003079. , 2002, The Plant Cell Online.

[86]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[87]  S. Lovett,et al.  Instability of repetitive DNA sequences: The role of replication in multiple mechanisms , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Kreitman,et al.  Adaptive protein evolution at the Adh locus in Drosophila , 1991, Nature.

[89]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[90]  W. F. Thompson,et al.  Rapid isolation of high molecular weight plant DNA. , 1980, Nucleic acids research.

[91]  Ario,et al.  The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event , 2020 .

[92]  Luca Comai,et al.  ​Plant centromeres​. , 2017, Current opinion in plant biology.

[93]  Ira M. Hall,et al.  BEDTools: a flexible suite of utilities for comparing genomic features , 2010, Bioinform..

[94]  J. Dvorak,et al.  Recombination: an underappreciated factor in the evolution of plant genomes , 2007, Nature Reviews Genetics.

[95]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.