Robust incoherent control of qubit systems via switching and optimisation

A robust incoherent quantum control scheme via projective measurements plus unitary transformations is proposed for driving a qubit system from an unknown initial mixed state to an arbitrary target pure state. This scheme consists of two main steps: projective measurement on the initial mixed state and optimal control between two pure states. The first step projects the initial state into an eigenstate of the qubit system by projective measurement and guarantees that the proposed scheme is robust to different initial mixed states. The second step finds a set of suitable optimal controls to drive the qubit system from the conditional eigenstate to the target pure state. The connection between the two steps is accomplished by a switching strategy. To accomplish the second step, two approaches are presented in detail. These approaches are time-optimal transition with unbounded control and bang-bang control with minimal switches. The minimal time and minimal number of switches in these approaches can be calculated by simple analytical expressions. The proposed approaches provide two relatively straightforward optimal design methods.

[1]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[2]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[3]  M. L. Ladron de Guevara,et al.  Measurement-driven quantum evolution , 2006 .

[4]  Domenico D'Alessandro,et al.  Incoherent control and entanglement for two-dimensional coupled systems , 2005, SPIE Defense + Commercial Sensing.

[5]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[6]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[7]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[8]  Herschel Rabitz,et al.  Quantum control by von Neumann measurements , 2006 .

[9]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[10]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[11]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[13]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[14]  James Lam,et al.  Rapid incoherent control of quantum systems based on continuous measurements and reference model , 2009 .

[15]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[16]  D. J. Hanson,et al.  Book Reviews : Harold Fallding, The Sociological Task : A Concise Introduction to the Main Issues in Sociological Theory and Method. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1958 , 1970 .

[17]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[18]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[19]  Jing Zhang,et al.  Optimal bang-bang control for SU(1,1) coherent states , 2007 .

[20]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[21]  V. I. Man'ko,et al.  Quantum control and the Strocchi map , 2003 .

[22]  Naoki Yamamoto,et al.  Feedback control of quantum entanglement in a two-spin system , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Daoyi Dong,et al.  Incoherent control of locally controllable quantum systems. , 2008, The Journal of chemical physics.

[24]  D. Sugny,et al.  Time-optimal control of a two-level dissipative quantum system , 2007, 0708.3794.

[25]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[26]  Domenico D'Alessandro Optimal evaluation of generalized Euler angles with applications to control , 2004, Autom..

[27]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[28]  Claudio Altafini,et al.  Feedback Stabilization of Isospectral Control Systems on Complex Flag Manifolds: Application to Quantum Ensembles , 2007, IEEE Transactions on Automatic Control.

[29]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[30]  Herschel Rabitz,et al.  Observation-assisted optimal control of quantum dynamics. , 2007, The Journal of chemical physics.

[31]  Shinji Hara,et al.  Feedback control of quantum entanglement in a two-spin system , 2005, CDC 2005.

[32]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[33]  Pradip Kumar Das,et al.  Optimal control of multi-level quantum system with energy cost functional , 2007, Int. J. Control.

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  Zonghai Chen,et al.  Quantum robot: structure, algorithms and applications , 2005, Robotica.

[36]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[37]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[38]  Tzyh Jong Tarn,et al.  Incoherent Control of Quantum Systems With Wavefunction-Controllable Subspaces via Quantum Reinforcement Learning , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[39]  J. Gauthier,et al.  Optimal control in laser-induced population transfer for two- and three-level quantum systems , 2002 .

[40]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.