Shadow Generation Protocol in Linguistic Threshold Schemes

The field of secret splitting algorithms has recently seen solutions based on using syntactic methods to create further information used as an additional component of the split secret. One of such solutions comprises linguistic threshold schemes which use context-free grammars to code the input string representing the shared secret. This study describes a general protocol for creating secret components using this approach. This solution allows the known, traditional secret sharing algorithms to be extended into algorithms executed in a hierarchical way. Such methods can then be used to split and manage information in various information structures that have linear characteristics or divisional dependencies.

[1]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[2]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[3]  Wei Zhao,et al.  Privacy-Preserving Data Mining Systems , 2007, Computer.

[4]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[5]  M.R. Ogiela,et al.  Linguistic Extension for Secret Sharing (m, n)-Threshold Schemes , 2008, 2008 International Conference on Security Technology.

[6]  G. R. Blakley,et al.  Threshold Schemes with Disenrollment , 1992, CRYPTO.

[7]  Alfredo De Santis,et al.  Constructions and Bounds for Visual Cryptography , 1996, ICALP.

[8]  Jean-Jacques Quisquater,et al.  Advances in Cryptology — EUROCRYPT ’95 , 2001, Lecture Notes in Computer Science.

[9]  John Bloom,et al.  A modular approach to key safeguarding , 1983, IEEE Trans. Inf. Theory.

[10]  Alfredo De Santis,et al.  Lower Bounds for Robust Secret Sharing Schemes , 1997, Inf. Process. Lett..

[11]  Ernest F. Brickell,et al.  Advances in Cryptology — CRYPTO’ 92 , 2001, Lecture Notes in Computer Science.

[12]  Philippe Béguin,et al.  General Short Computational Secret Sharing Schemes , 1995, EUROCRYPT.

[13]  Marten van Dijk On the information rate of perfect secret sharing schemes , 1995, Des. Codes Cryptogr..

[14]  Yvo Desmedt,et al.  Threshold Cryptosystems , 1989, CRYPTO.

[15]  Keith M. Martin,et al.  Ideal secret sharing schemes with multiple secrets , 1996, Journal of Cryptology.

[16]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[17]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.