Underwater single crystal piezocomposite transducer with extended usable frequency band.

[1]  L. Hoff,et al.  Optimization of Matching Layers to Extend the Usable Frequency Band for Underwater Single-Crystal Piezocomposite Transducers , 2021, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[2]  Faxin Li,et al.  Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review. , 2021, Ultrasonics.

[3]  K. Ferrara,et al.  The effective coupling coefficient for a completed PIN-PMN-PT array. , 2020, Ultrasonics.

[4]  Haosu Luo,et al.  FEM simulation and comparison of PMN-PT single crystals based phased array ultrasonic transducer by alternating current poling and direct current poling. , 2020, Ultrasonics.

[5]  Christopher D. Wilson,et al.  Broadband echosounder measurements of the frequency response of fishes and euphausiids in the Gulf of Alaska , 2018 .

[6]  Andone C. Lavery,et al.  Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus) , 2017 .

[7]  J. Powers,et al.  Single-crystal lead magnesium niobate-lead titanate (PMN/PT) as a broadband high power transduction material. , 2007, The Journal of the Acoustical Society of America.

[8]  M. Sulc,et al.  Laser Interferometric Displacement Measurements of Multi-Layer Actuators and PZT Ceramics , 2005 .

[9]  G. Kino,et al.  The design of efficient broad-band piezoelectric transducers , 1978 .

[10]  Jinwook Kim,et al.  Evaluation of All the Material Constants of PMN-28%PT Piezoelectric Single Crystals for Acoustic Transducers , 2013 .

[11]  B. Auld,et al.  Modeling 1-3 composite piezoelectrics: thickness-mode oscillations , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.