Ti nanorod arrays with a medium density significantly promote osteogenesis and osteointegration

[1]  S. Kundu,et al.  Non-mulberry silk fibroin influence osteogenesis and osteoblast-macrophage cross talk on titanium based surface , 2014, Scientific Reports.

[2]  J. Liao,et al.  Ti nanorod arrays with periodic density fabricated via anodic technology , 2014 .

[3]  Jiandong Ding,et al.  Cell–Material Interactions Revealed Via Material Techniques of Surface Patterning , 2013, Advanced materials.

[4]  Xin Li,et al.  Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements , 2013, Scientific Reports.

[5]  W. Xi,et al.  Highly Conductive and Strain‐Released Hybrid Multilayer Ge/Ti Nanomembranes with Enhanced Lithium‐Ion‐Storage Capability , 2013, Advanced materials.

[6]  Jiao Sun,et al.  Different Activities of Osteoblast and Bacteria on a Nanostructured Titanium Surface for Dental Implant , 2012 .

[7]  K. Nakanishi,et al.  Selective preparation of macroporous monoliths of conductive titanium oxides Ti(n)O(2n-1) (n = 2, 3, 4, 6). , 2012, Journal of the American Chemical Society.

[8]  K. Popat,et al.  PCL Nanopillars Versus Nanofibers: A Contrast in Progenitor Cell Morphology, Proliferation, and Fate Determination , 2012 .

[9]  Shanshan Huang,et al.  Anodic formation of Ti nanorods with periodic length , 2012 .

[10]  Chuanbin Mao,et al.  Controlled growth and differentiation of MSCs on grooved films assembled from monodisperse biological nanofibers with genetically tunable surface chemistries. , 2011, Biomaterials.

[11]  Zhian Zhang,et al.  Polyaniline nanowire array encapsulated in titania nanotubes as a superior electrode for supercapacitors. , 2011, Nanoscale.

[12]  G. Yi,et al.  The Topographic Effect of Zinc Oxide Nanoflowers on Osteoblast Growth and Osseointegration , 2010, Advanced materials.

[13]  Jason A. Burdick,et al.  Controlling Stem Cell Fate with Material Design , 2010, Advanced materials.

[14]  V. Shastri In vivo Engineering of Tissues: Biological Considerations, Challenges, Strategies, and Future Directions , 2009, Advanced materials.

[15]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[16]  Ke Yang,et al.  In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. , 2009, Biomaterials.

[17]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[18]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[19]  M. Biffoni,et al.  Identification and expansion of the tumorigenic lung cancer stem cell population , 2008, Cell Death and Differentiation.

[20]  A. Bandyopadhyay,et al.  Surface modifications and cell-materials interactions with anodized Ti. , 2007, Acta biomaterialia.

[21]  Frédéric Barlat,et al.  Orthotropic yield criterion for hexagonal closed packed metals , 2006 .

[22]  Christopher J Murphy,et al.  Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells , 2004, Journal of Cell Science.

[23]  F. Müller,et al.  Biomimetic apatite formation on chemically treated titanium. , 2004, Biomaterials.

[24]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[25]  Toshimitsu Tetsui,et al.  Gamma Ti aluminides for non-aerospace applications , 1999 .

[26]  F. Froes,et al.  Surface Oxides in P/M Aluminum Alloys , 1985 .

[27]  J. Paulo Davim,et al.  Machining of titanium alloys , 2014 .