Constructing New Braided T-Categories over Weak Hopf Algebras

Let AutweakHopf(H) denote the set of all automorphisms of a weak Hopf algebra H with bijective antipode in the sense of Böhm et al. (J Algebra 221:385–438, 1999) and let G be a certain crossed product group AutweakHopf(H)×AutweakHopf(H). The main purpose of this paper is to provide further examples of braided T-categories in the sense of Turaev (1994, 2008). For this, we first introduce a class of new categories $ _{H}{\mathcal {WYD}}^{H}(\alpha, \beta)$ of weak (α, β)-Yetter-Drinfeld modules with α, β ∈ AutweakHopf(H) and we show that the category ${\mathcal WYD}(H) =\{{}_{H}\mathcal {WYD}^{H}(\alpha, \beta)\}_{(\alpha , \beta )\in G}$ becomes a braided T-category over G, generalizing the main constructions by Panaite and Staic (Isr J Math 158:349–365, 2007). Finally, when H is finite-dimensional we construct a quasitriangular weak T-coalgebra WD(H) = {WD(H)(α, β)}(α, β) ∈ G in the sense of Van Daele and Wang (Comm Algebra, 2008) over a family of weak smash product algebras $\{\overline{H^{*cop}\# H_{(\alpha,\beta)}}\}_{(\alpha , \beta)\in G}$, and we obtain that ${\mathcal {WYD}}(H)$ is isomorphic to the representation category of the quasitriangular weak T-coalgebra WD(H).

[1]  V. Turaev Quantum Invariants of Knots and 3-Manifolds , 1994, hep-th/9409028.

[2]  Vladimir Turaev Homotopy field theory in dimension 3 and crossed group-categories , 2000 .

[3]  Florin Panaite,et al.  Generalized (anti) Yetter-Drinfeld modules as components of a braided T-category , 2005 .

[4]  Masoud Khalkhali,et al.  Stable anti-Yetter-Drinfeld modules , 2004 .

[5]  P. Jara,et al.  Hopf–Cyclic Homology and Relative Cyclic Homology of Hopf–Galois Extensions , 2006 .

[6]  Vladimir Turaev,et al.  Invariants of knots and 3-manifolds from quantum groupoids , 2000 .

[7]  Ross Street,et al.  Braided Tensor Categories , 1993 .

[8]  Doi-Hopf Modules over Weak Hopf Algebras , 1999, math/9905027.

[9]  S. Caenepeel,et al.  Yetter-Drinfeld modules over weak bialgebras , 2004, ANNALI DELL UNIVERSITA DI FERRARA.

[10]  Shuanhong Wang,et al.  New Braided Crossed Categories and Drinfel'd Quantum Double for Weak Hopf Group Coalgebras , 2008 .

[11]  G. Bohm,et al.  Weak Hopf Algebras: I. Integral Theory and C-Structure , 1998, math/9805116.

[12]  H. Schneider,et al.  New directions in Hopf algebras , 2002 .

[13]  David N. Yetter,et al.  Braided Compact Closed Categories with Applications to Low Dimensional Topology , 1989 .

[14]  S. Caenepeel,et al.  Modules over weak entwining structures , 2000 .

[15]  P. M. Hajac,et al.  Hopf-cyclic homology and cohomology with coefficients , 2003 .

[16]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[17]  S. Caenepeel,et al.  A Categorical Approach to Turaev's Hopf Group-Coalgebras , 2004, math/0409600.

[18]  V. Turaev Quantum invariants of knots and three manifolds , 1994 .

[19]  Finite Quantum Groupoids and Their Applications , 2000, math/0006057.

[20]  Hopf group-coalgebras , 2000, math/0012073.

[21]  Marcos Zunino Yetter–Drinfeld modules for crossed structures , 2004 .

[22]  Stefaan Caenepeel,et al.  The Brauer group of Yetter-Drinfel'd module algebras , 1997 .