Quantitative analysis of embryogenesis: a perspective for light sheet microscopy.

It is a challenge in developmental biology to understand how an embryo's genes, proteins, and cells function and interact to govern morphogenesis, cell fate specification, and patterning. These processes span very different spatial and temporal scales. Despite much progress, simultaneous observation of such vastly differing scales has been beyond the scope of conventional microscopy. Light sheet microscopy fills this gap and is increasingly used for long-term, high-speed recordings of large specimens with high contrast and up to subcellular spatial resolution. We provide an overview of applications of light sheet microscopy in developmental biology and discuss future perspectives in this field.

[1]  Charless C. Fowlkes,et al.  A Quantitative Spatiotemporal Atlas of Gene Expression in the Drosophila Blastoderm , 2008, Cell.

[2]  T. Holy,et al.  Fast Three-Dimensional Fluorescence Imaging of Activity in Neural Populations by Objective-Coupled Planar Illumination Microscopy , 2008, Neuron.

[3]  Gregory T. Reeves,et al.  Mesoderm migration in Drosophila is a multi-step process requiring FGF signaling and integrin activity , 2010, Development.

[4]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[5]  Miguel A. Luengo-Oroz,et al.  Wavelet-based image fusion in multi-view three-dimensional microscopy , 2012, Bioinform..

[6]  Philipp J. Keller,et al.  Reconstructing embryonic development , 2011, Genesis.

[7]  Jan Huisken,et al.  Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope , 2012, Development.

[8]  Loren L Looger,et al.  Corrigendum: Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns , 2012, Nature Methods.

[9]  R. Pedersen,et al.  Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. , 1991, Development.

[10]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[11]  D. Ow,et al.  Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase , 2003, Nature Biotechnology.

[12]  Guillaume Labroille,et al.  Multicolor two-photon tissue imaging by wavelength mixing , 2012, Nature Methods.

[13]  Hans-Ulrich Dodt,et al.  Image contrast enhancement in confocal ultramicroscopy. , 2010, Optics letters.

[14]  C. Kimmel,et al.  Origin and organization of the zebrafish fate map. , 1990, Development.

[15]  G. Edwards,et al.  Forces for Morphogenesis Investigated with Laser Microsurgery and Quantitative Modeling , 2003, Science.

[16]  M. Davidson,et al.  Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination , 2011, Nature Methods.

[17]  G. Rubin,et al.  Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. , 1985, Science.

[18]  David Artigas,et al.  A simple scanless two-photon fluorescence microscope using selective plane illumination. , 2010, Optics express.

[19]  Thomas J. Nicholas,et al.  Automated analysis of embryonic gene expression with cellular resolution in C. elegans , 2008, Nature Methods.

[20]  R. Rao,et al.  Analysis of the integration function of the streptomycete bacteriophage phi C31. , 1991, Journal of molecular biology.

[21]  Erik Meijering,et al.  Model-based approach for tracking embryogenesis in Caenorhabditis elegans fluorescence microscopy data , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[22]  F. Watt,et al.  Lineage Tracing , 2012, Cell.

[23]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[24]  S. Barolo,et al.  Transgenic Wnt/TCF pathway reporters: all you need is Lef? , 2006, Oncogene.

[25]  M. Lehmann,et al.  Structural analysis of the actinophage phi C31 attachment site. , 1991, Nucleic acids research.

[26]  T. Holy,et al.  Organization of Vomeronasal Sensory Coding Revealed by Fast Volumetric Calcium Imaging , 2012, Journal of Neuroscience.

[27]  T. Holy,et al.  Image-based calibration of a deformable mirror in wide-field microscopy. , 2010, Applied optics.

[28]  Le A. Trinh,et al.  A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. , 2011, Genes & development.

[29]  H. Rigneault,et al.  Fluorescence correlation spectroscopy. , 2011, Methods in molecular biology.

[30]  Ryan S. Udan,et al.  Imaging mouse embryonic development. , 2010, Methods in enzymology.

[31]  Lars Hufnagel,et al.  Multiview light-sheet microscope for rapid in toto imaging , 2012, Nature Methods.

[32]  F. Lescroart,et al.  Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo , 2010, Development.

[33]  D. Stainier,et al.  High-speed imaging of developing heart valves reveals interplay of morphogenesis and function , 2008, Development.

[34]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[35]  Julie H. Simpson,et al.  BrainAligner: 3D Registration Atlases of Drosophila Brains , 2011, Nature Methods.

[36]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[37]  T. Zimmermann,et al.  Live cell spinning disk microscopy. , 2005, Advances in biochemical engineering/biotechnology.

[38]  Kevin H. Gardner,et al.  Structural Basis of a Phototropin Light Switch , 2003, Science.

[39]  A. Joyner,et al.  Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. , 1989, Science.

[40]  H. Schnabel,et al.  Assessing normal embryogenesis in Caenorhabditis elegans using a 4D microscope: variability of development and regional specification. , 1997, Developmental biology.

[41]  A. Rohrbach,et al.  Microscopy with self-reconstructing beams , 2010 .

[42]  J. Lister Transgene excision in zebrafish using the phiC31 integrase , 2010, Genesis.

[43]  Aristides B. Arrenberg,et al.  Optogenetic Control of Cardiac Function , 2010, Science.

[44]  D. Stainier,et al.  Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). , 2007, Optics letters.

[45]  Stephan Saalfeld,et al.  Software for bead-based registration of selective plane illumination microscopy data , 2010, Nature Methods.

[46]  R. Waterston,et al.  Specific roles for the GATA transcription factors end-1 and end-3 during C. elegans E-lineage development. , 2011, Developmental biology.

[47]  Raju Tomer,et al.  Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium , 2010, Cell.

[48]  Zhirong Bao,et al.  AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis , 2006, BMC Bioinformatics.

[49]  David S. Koos,et al.  Deep and fast live imaging with two-photon scanned light-sheet microscopy , 2011, Nature Methods.

[50]  John Isaac Murray,et al.  The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree , 2006, Nature Protocols.

[51]  Mike Friedrich,et al.  STED-SPIM: Stimulated emission depletion improves sheet illumination microscopy resolution. , 2011, Biophysical journal.

[52]  A D Chisholm,et al.  Cell Lineage , 1898, The American Naturalist.

[53]  Pavel Tomancak,et al.  A toolkit for high-throughput, cross-species gene engineering in Drosophila , 2009, Nature Methods.

[54]  Yi Yang,et al.  Spatiotemporal control of gene expression by a light-switchable transgene system , 2012, Nature Methods.

[55]  T. Ng,et al.  Imaging proteins in vivo using fluorescence lifetime microscopy. , 2007, Molecular bioSystems.

[56]  Philipp J. Keller,et al.  Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy , 2012, Nature Methods.

[57]  Julien Colombelli,et al.  Three-dimensional laser microsurgery in light-sheet based microscopy (SPIM). , 2007, Optics express.

[58]  Lázaro Centanin,et al.  Fate restriction and multipotency in retinal stem cells. , 2011, Cell stem cell.

[59]  Amy E Palmer,et al.  Design and application of genetically encoded biosensors. , 2011, Trends in biotechnology.

[60]  P. Tomançak,et al.  Mapping the gene expression universe. , 2008, Current opinion in genetics & development.

[61]  T. Ng,et al.  The CS Award for chemical analysis and instrumentation , 1980 .

[62]  Philipp J. Keller,et al.  Fast, high-contrast imaging of animal development with scanned light sheet–based structured-illumination microscopy , 2010, Nature Methods.

[63]  Erez Raz,et al.  A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo , 2010, Nature Cell Biology.

[64]  Thomas Brox,et al.  Multiview Deblurring for 3-D Images from Light-Sheet-Based Fluorescence Microscopy , 2012, IEEE Transactions on Image Processing.

[65]  Thomas Brox,et al.  ViBE-Z: a framework for 3D virtual colocalization analysis in zebrafish larval brains , 2012, Nature Methods.

[66]  B. S. Manjunath,et al.  Biological imaging software tools , 2012, Nature Methods.

[67]  X. Cui,et al.  Targeted integration in rat and mouse embryos with zinc-finger nucleases , 2011, Nature Biotechnology.

[68]  P. Bourgine,et al.  Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy , 2010, Science.

[69]  Cyrille Alexandre,et al.  Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster , 2011, Nature Methods.

[70]  J. Sharpe,et al.  4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies , 2011, Journal of biophotonics.

[71]  P. Shaw,et al.  Three‐dimensional optical microscopy using tilted views , 1990, Journal of microscopy.

[72]  Joachim Wittbrodt,et al.  Individual Cell Migration Serves as the Driving Force for Optic Vesicle Evagination , 2006, Science.

[73]  F. Dudek,et al.  Electrophysiological evidence using focal flash photolysis of caged glutamate that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. , 2005, Journal of neurophysiology.

[74]  B. L. Roman,et al.  Dynamic analysis of BMP‐responsive smad activity in live zebrafish embryos , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[75]  Eugene W. Myers,et al.  Analysis of Cell Fate from Single-Cell Gene Expression Profiles in C. elegans , 2009, Cell.

[76]  Daichi Kamiyama,et al.  Endogenous Activation Patterns of Cdc42 GTPase Within Drosophila Embryos , 2009, Science.

[77]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[78]  Philipp J. Keller,et al.  Shedding light on the system: studying embryonic development with light sheet microscopy. , 2011, Current Opinion in Genetics and Development.

[79]  Jim Haseloff,et al.  High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. , 2011, The Plant journal : for cell and molecular biology.

[80]  Thorsten Wohland,et al.  Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. , 2010, Optics express.

[81]  Yi I. Wu,et al.  Light-mediated activation reveals a key role for Rac in collective guidance of cell movement in vivo , 2010, Nature Cell Biology.

[82]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[83]  M. Buckingham,et al.  Tracing cells for tracking cell lineage and clonal behavior. , 2011, Developmental cell.

[84]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[85]  Lars Hufnagel,et al.  Quantitative fluorescence imaging of protein diffusion and interaction in living cells , 2011, Nature Biotechnology.

[86]  R. Waterston,et al.  Multidimensional regulation of gene expression in the C. elegans embryo , 2012, Genome research.

[87]  Jan Huisken,et al.  Multi-view image fusion improves resolution in three-dimensional microscopy. , 2007, Optics express.

[88]  Karl Mechtler,et al.  BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals , 2008, Nature Methods.

[89]  A. Rohrbach,et al.  Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media , 2012, Nature Communications.

[90]  J. Christie,et al.  LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[91]  H. Siedentopf,et al.  Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser , 1902 .

[92]  Scott E. Fraser,et al.  Digitizing life at the level of the cell: high-performance laser-scanning microscopy and image analysis for in toto imaging of development , 2003, Mechanisms of Development.

[93]  Jan Huisken,et al.  Light sheet microscopy for real-time developmental biology. , 2011, Current opinion in genetics & development.

[94]  Jan Huisken,et al.  Selective plane illumination microscopy techniques in developmental biology , 2009, Development.

[95]  Jan Huisken,et al.  Slicing embryos gently with laser light sheets , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[96]  D H Burns,et al.  Orthogonal‐plane fluorescence optical sectioning: Three‐dimensional imaging of macroscopic biological specimens , 1993, Journal of microscopy.

[97]  P. Santi,et al.  Light Sheet Fluorescence Microscopy , 2011, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[98]  E. Myers,et al.  A 3D Digital Atlas of C. elegans and Its Application To Single-Cell Analyses , 2009, Nature Methods.

[99]  Emmanuel G Reynaud,et al.  Three-dimensional Fluorescence Lifetime Imaging with a Single Plane Illumination Microscope provides an improved signal to noise ratio. , 2011, Optics express.

[100]  Uros Krzic,et al.  Light sheet‐based fluorescence microscopy: More dimensions, more photons, and less photodamage , 2008, HFSP journal.

[101]  I. Raabe,et al.  Local BMP receptor activation at adherens junctions in the Drosophila germline stem cell niche. , 2011, Nature communications.

[102]  Jin Zhang,et al.  Visualizing dynamic activities of signaling enzymes using genetically encodable FRET-based biosensors from designs to applications. , 2012, Methods in enzymology.

[103]  Hanchuan Peng,et al.  Bioimage informatics: a new area of engineering biology , 2008, Bioinform..

[104]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[105]  Xiao Liu,et al.  Simultaneous recognition and segmentation of cells: application in C.elegans , 2011, Bioinform..

[106]  R. Waterston,et al.  Automated cell lineage tracing in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Gregory T. Reeves,et al.  Dorsal-ventral gene expression in the Drosophila embryo reflects the dynamics and precision of the dorsal nuclear gradient. , 2012, Developmental cell.

[108]  Jan M. Deussing,et al.  The optogenetic (r)evolution , 2011, Molecular Genetics and Genomics.

[109]  D. Bohmann,et al.  A Versatile ΦC31 Based Reporter System for Measuring AP-1 and Nrf2 Signaling in Drosophila and in Tissue Culture , 2012, PloS one.

[110]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[111]  Antoon F. M. Moorman,et al.  More than a decade of developmental gene expression atlases: where are we now? , 2009, Nucleic acids research.

[112]  Hans-Ulrich Dodt,et al.  Light sheet microscopy of living or cleared specimens , 2012, Current Opinion in Neurobiology.