Nonlinear Resonance in Basin Portraits of Two Coupled Swings Under Periodic Forcing

A model of a simple electric power supply network involving two generators connected by a transmission network to a bus is studied by numerical simulation. In this model, the bus is supposed to maintain a voltage of fixed amplitude, but with a small periodic fluctuation in the phase angle. In such a case, traditional analysis using direct methods is not applicable. The frequency of the periodic fluctuation is varied over a range of values near a nonlinear resonance of the two-generator network. When the bus fluctuation frequency is away from resonance, the system has several attractors; one is a small-amplitude periodic oscillation corresponding to synchronized, quasi-normal operation (slightly swinging), while others are large amplitude periodic oscillations which, if realized, would correspond to one or both generators operating in a desynchronized steady state. When the bus fluctuation frequency approaches resonance, a new periodic attractor with large amplitude oscillations appears. Although it does correspond to a synchronized steady state, this attractor has a disastrously large amplitude of oscillation, and represents an unacceptable condition for the network. Basin portraits show that this resonant attractor erodes large, complicated regions of the basin of the safe operating condition. Under conditions of small periodic fluctuation in bus voltage, this basin erosion would not be detected by traditional analysis using direct methods. Further understanding of such complicated basin structures will be essential to correctly predict the stability of electric power supply systems.